Category Archives: immunology, inflammation, autoimmunity, fibrosis

SugarCone Biotech will be at Sach’s Biopartnering 2015

Sach’s is a premier international biopartnering event, a highly focused 2-day conference spanning multiple disciplines and therapeutic modalities. Paul Rennert, Founder & Principal of SugarCone Biotech LLC, will be in attendance, to introduce novel programs and companies to interested investors, and conversely, to connect up and coming biotechs and academic spin-outs to the investment community. Please reach out to Paul during the conference using the one-on-one meeting app or via

We hope to see you there. Here is the conference web site:–investment-29-30-september-2015-congress-center-basel.html

Screen Shot 2015-08-31 at 6.56.59 AM

Brodalumab for Psoriasis – what a mess

Let’s agree that the headline “Suicide Stunner” – penned by John Carroll for FierceBiotech – can never auger anything but very bad news, and never more so then when it is used to describe clinical trial results. Released on the Friday before the long US holiday weekend, bookended to the announcement of positive news on it’s PSCK9 program, Amgen stated that it was walking away from an expensive co-development program with AstraZeneca, basically washing it’s hands of the anti-IL-17 receptor (IL-17R) antibody brodalumab because of suicidal tendencies and actual suicides that occurred in the Phase 3 psoriasis trials. Brodalumab is under development for the treatment of plaque psoriasis, psoriatic arthritis and axial spondyloarthritis. Amgen stated that they believed that the approval label for brodalumab would contain warning language regarding suicide risk, and this would limit the success of the drug. By using such language while pulling the plug Amgen has essentially put AstraZeneca in the position of having to prove to the FDA that there is no suicide risk.

Holy crap.

Note here that we are not talking about a psychiatric drug, where the risk of suicide might be the consequence of trying to re-align an aberrant central nervous system. Instead we are talking about a drug that targets autoimmune disorders by blocking the action of T cells. This is not a biology linked to psychiatric health, at least not as we understand it today (more on this later).

Backing up: in April 2012, AstraZeneca and Amgen announced a collaboration to jointly develop and commercialize five clinical-stage monoclonal antibodies from Amgen’s inflammation portfolio: AMG 139, AMG 157, AMG 181, AMG 557 and brodalumab (aka AMG 827). The drivers for the collaboration were Amgen’s biologics expertise, the strong respiratory, inflammation and asthma development expertise of MedImmune (AstraZeneca’s biologics division), AstraZeneca’s global commercial reach in respiratory and gastrointestinal diseases, and the shared resources of two experienced R&D organizations

Under the terms of the agreement, AstraZeneca paid Amgen a $50MM upfront payment and the companies shared development costs. The breakout was as follows: AstraZeneca was responsible for approximately 65 percent of costs for the 2012-2014 period, and the companies now split costs equally. Amgen was to book sales globally and retain a low single-digit royalty for brodalumab. Amgen retained a mid single-digit royalty for the rest of the portfolio with remaining profits to be shared equally between the partners.

It gets even more complicated. Amgen was to lead the development and commercialization of brodalumab (and AMG 557, see below). Amgen was to assume promotion responsibility for brodalumab in dermatology indications in North America, and in rheumatology in North America and Europe. AstraZeneca was to assume promotion responsibility in respiratory and dermatology indications ex-North America. AstraZeneca remains responsible for leading the development and commercialization of AMG 139, AMG 157 and AMG 181. We’ll touch on these other antibodies at the very end.

Back to brodalumab. On balance, Amgen was on the hook for the development and commercialization costs, direct, indirect and ongoing, for dermatology indications in the US and also rheumatology, which in this case refers to psoriatic arthritis and axial spondyloarthritis. On the other hand, AstraZeneca was on the hook for commercialization in respiratory indications worldwide, and dermatology ex-US. This is interesting because brodalumab failed in its’ respiratory indication, moderate to severe asthma, and failed late, in a Phase 2b patient subset trial. So, on balance, much of the overall development cost seems to have shifted back onto Amgen over time (this is not to say that the companies would not have changed terms mid-term, they may have).

Two weeks ago I chaired a session on “Biologics for Autoimmune Disease” at the PEGS conference on Boston. In my opening remarks I used psoriasis as an example of an indication in which we were making clear and important progress, including with IL-17-directed therapeutics. Indeed, psoriasis is now a “crowded” indication commercially, with antibodies and receptor fusion proteins targeting the TNFs, IL-6, IL-12, IL-17, and IL-23 pathways all showing at least some activity. Notably, IL-17 and IL-23 targeting drugs appear to offer the greatest benefit in clearing psoriatic plaques. These pathways intersect in myriad ways, not all of which are well understood. This cartoon shows the effector cytokines and the receptors are expressed by diverse cell types, including dendritic cells, macrophages, T cells, and keratinocytes in the dermis.

IL-17 and friends

In simplistic terms, IL-6 triggers IL-12 and IL-23, and IL-23 triggers IL-17. As mentioned, the IL-17 and IL-23 targeting agents have great efficacy in psoriasis. Amgen and AstraZeneca were preparing an NDA (new drug application) for FDA submission based on results from three large Phase 3 studies. Here are the listed Phase 3 programs for brodalumab:

broda 1

I suppose those Phase 3 studies in psoriatic arthritis will now be tabled or transferred to AstraZeneca. For the sake of completeness here are the earlier studies:

broda 2

Certainly the clinical program was a robust one. So, what went wrong? Amgen R&D head Sean Harper summed up Amgen’s thinking about the suicide issue in the press release: “During our preparation process for regulatory submissions, we came to believe that labeling requirements likely would limit the appropriate patient population for brodalumab.”

The news aggregator and commentary website UpdatesPlus had this to add, questioning whether this result was “bad luck, bad target or victim of brodalumab’s efficacy: Despite high efficacy in Phase 3 studies, whispers of suicidality associated with brodalumab started to emerge at AAD.  At the time Amgen suggested this was related to disease however the company refused to comment on total rates and whether events were seen across arms … The question is whether Amgen is being hyper-cautious or whether the risk of suicidality is especially concerning.  Questions also emerge around the cause of risk – is this a spurious cluster of events unrelated to brodalumab; is suicidality perhaps related to relapse from the excellent efficacy associated with brodalumab after withdrawal (remember most patients exhibited at least PASI 90 on treatment but durability was very poor upon withdrawal); or perhaps suicidality is related to blocking the IL-17RA (note that suicidality has not to our knowledge been reported for the IL-17A ligand mAb Cosentyx) … One final point is whether regulators will now reevaluate suicide risk of IL-17 related molecules as a class – much greater clarity of brodalumab data is required to make a judgement.” That’s quite a nice summary from UpdatesPlus.

FierceBiotech’s report added “AstraZeneca would face some stiff competition if it decides to move forward solo on the drug. Novartis is already well in front with its IL-17 program for secukinumab, approved in January as Cosentyx. Eli Lilly has also been racking up positive late-stage studies for its IL-17-blocking ixekizumab, trailed by Merck’s MK-3222 and Johnson & Johnson’s IL-23 inhibitor guselkumab.”

Still, brodalumab demonstrated remarkable efficacy in psoriasis – Amgen and AstraZeneca went so for as to include a PASI100 score in one of their trials, meaning 100% clearance of psoriatic plaques, and the drug would have shown well against the best of breed, which today is likely Novartis’ anti-IL-17 antibody secukinumab. It is crowded space however, with antagonists targeting multiple nodes in the IL-17/IL-23 axis, alongside the biologics mentioned earlier.

Here is the current landscape from CiteLine (including brodalumab):


All in all, a tough crowd, and one that Amgen likely felt it could not face with a compromised label.

Let’s go back to the question posed above: bad luck, bad target or victim of superior efficacy? “Bad luck” suggests a statistical fluke in the data, potentially caused by the generally higher rates of suicidal tendencies observed in the moderate to severe psoriasis patient population. “Victim of superior efficacy” is in a sense a related issue, since the suggestion is that the loss of responsiveness to the drug, or a relapse, triggers a suicidal response as plaques return. Neither of these statements is really formulated as a hypothesis, and it doesn’t matter, as we don’t have the actual trial data yet with which to perform hypothesis testing.

“Bad target” is the most worrisome suggestion, and this can be formulated as a hypothesis, formally, the null hypothesis is that targeting the IL-17 receptor does not cause suicidal tendencies. Unfortunately, we still can’t test the hypothesis, and it seems likely that having the actual data won’t really help, that is, the study is probably not powered to reject that particular null hypothesis. So, what do we know? A few things, as it turns out.

First is that a link between the immune system and the nervous system is well established, although much of the focus has been on the role of neuronal enervation on immune responses. But clinically at least, the picture is muddier than that. High dose IL-2 can cause neurotoxicity, even hallucinations, according to Dr. Kathleen Mahoney, an oncologist at Beth Israel Deaconess and the Dana Farber. But what is really interesting is what else happens: “Some IL-2 treated patients can have odd dreams, really crazy dreams, and they last for weeks after treatment, long past the time when IL-2 would still be present in the body”, Dr. Mahoney said. Interferon alpha therapy is associated with pathological (severe) fatigue and also depressive symptoms that develop after 4–8 weeks of treatment. Of note, preventive treatment with anti-depressants, in particular serotonin reuptake inhibition attenuates IFN-alpha-associated symptoms of depression, anxiety, and neurotoxicity. Some researchers have suggested (controversially) that anti-TNF antibodies can control depression. Such anecdotal clinical observations suggest that we really do not yet understand the immune system connection to CNS activity.

On the other hand, antagonism of cytokine activity, and particularly of the cytokines IL-6, IL-17 and IL-23, has not been associated with neurological symptoms. For example the anti-IL-6 receptor antibody tocilizumab has shown a positive impact in rheumatoid arthritis patients quality of life scoring, which includes fatigue, anxiety, depression and a number of other factors. More to the point, the anti-IL-17 antibody secukinumab, that targets the IL-17 ligand (rather than the receptor), has not shown a link to suicide.

Clearly more data are needed, and it would not be surprising if the FDA began a drug class review if the data in the brodalumab trials warrant. They could cast quite a wide net given the complexity of this pathway, which overlaps with IL-6, IL-12 and IL-23. This casts a pall over the dermatology and particularly the rheumatology landscape, which is really waiting for novel therapeutics to move them successfully into new and important indications such as lupus and Type-1 Diabetes. The IL-17/IL-23 axis was to be that next great hope, and with luck we will still see these drugs moving out of their core indications of psoriasis and inflammatory bowel disease into new indications.

One last thing.

Those other antibodies – where are they now? A quick scorecard:


It is readily seen that none of these are beyond early Phase 2, so it’s fair to say that the rest of the Amgen/AstraZeneca partnership has a long way to go. I, for one, wish the ongoing collaboration the very best of luck, particularly in the lupus indications, where we can really use some good news.

stay tuned.

Holiday Reading

some of the stuff we’re reviewing over the holiday break. N.b. paywalls ahead!  And at the very end, some current non-science favorites.

Tumor Mutational Landscape

Age related variants of variants occurred in three genes (DNMT3A, TET2, and ASXL1) are associated with hematological malignancy risk and

News and Views on the NEJM papers

using siRNA to identify driver genes in breast cancer


a primer on the role of PD-1 pathway inhibitors in Hodgkin’s Lymphoma, from Nat Rev Clin Oncol

the role of TILs and TIL-associated TNF in the survival of CRC patients

nivolumab in metastatic RCC, published data

resistance to T cells in melanoma (hint: they lose MHC expression)

interesting look at PD-L1 expression of the response of RCC to targeted therapies

it’s hard to control ipilimumab-induced tox 2353.abstract

IO combination review

tumor/microenvironment cross-talk mediated by microRNAs

functional blockade of miR-23a releases TILs in an ex vivo NSCLC assay

neutrophils, T cells and lung cancer

Given the new immunotherapy data in bladder cancer, a review of the molecular drivers of this tumor type is most welcome

MDSC requirements for survival

Gene Therapy and CAR T

Novel gene therapy methods puts a safety brake on a retrovirus-based vector

a new review of the CRISPR, Talen, and ZFN technologies for gene editing

NY-ESO-1 CAR T P1 results in solid tumors: long term follow-up and correlates of response

Targeted Therapies

A very timely primer of the role of different PI3K isoforms in diverse cancers

a Notch in the cancer treatment belt? Nope, a bit of a toxic mess made with anti-DLL4 antibody Demcizumab from OncoMed

IL-17 and colon cancer?

Hematological Malignancies

von Adrian and Sharpe tease apart Follicular Lymphoma

the role of one of gp130 in multiple myeloma

Fibrosis, Inflammation, Metabolism, MS

a brand new fibrosis review

the TRPV4 pathway, TGFbeta and IPF

The role of novel branched fatty acid esters of hydroxy fatty acids in Type 2 diabetes

will STING finally yield a useful target in lupus?

an animal model of JCV infection and PML

Investment and Deals

Pharma funding to pull programs out of the academic space

some color from NRDD on the Genentech + NewLink IDO-1 inhibitor deal

Also notable

300,000,000. A violent graphic lurid hypnotic novel of the dissolution of consciousness and the consequence of multiple realities converging within our unprepared empty minds and upon our decadent culture. Horrific and wonderful, but not for the squeamish.

Thug Kitchen – eat like you give a #$%@^. Fun, but you get the idea.

Death & Co: Modern Classic Cocktails. Drink like an adult.

A worthy campaign by patients for the National MS society

Healthline has launched a video campaign for MS called “You’ve Got This”. Patients living with MS can record a short video to give hope and inspiration to those recently diagnosed with MS.

You can visit the homepage and check out videos from the campaign here:

They will be donating $10 for every submitted campaign video to the National MS Society, so the more exposure the campaign gets the more the videos they receive and the more Healthline can donate to MS research, support groups, treatment programs, and more.

contact Maggie Danhakl • Assistant Marketing Manager p: 415-281-3124 f: 415-281-3199

Healthline • The Power of Intelligent Health
660 Third Street, San Francisco, CA 94107 | @Healthline | @HealthlineCorp
About Healthline:

Biogen Idec, multiple sclerosis, and the anti-Lingo story

It’s AAN conference week, and we were looking around, trying to get caught up on multiple sclerosis after a few months dedicated to oncology. We stumbled across this analyst report, and just had to comment.

Credit Suisse (CS) recently released a deep-dive report on Biogen Idec’s (Nasdaq: BIIB) anti-Lingo antibody program, assigning between $5-10BB (billion) USD of the total relapsing/remitting Multiple Sclerosis (rrMS) market share to the program by 2020. The program is currently in Phase 2. This analysis, in part, supports CS’s current price target for BIIB stock at $400, leveraging presumed growth due to the view on continued success of the anti-Lingo program. In other words, positive news on this program will help support inflated multiples through 2018, when pivotal trials may actually read out. The analysis seems ill considered, misses key aspects of BIIB corporate strategy, and places undo pressure on an early Phase 2 program. Further, intense focus on the anti-Lingo antibody program in turn places pressure on two early phase clinical trials, one due to read out in 2H14. The implication is that the base case for the price target could be undermined if the very early clinical development of the anti-Lingo program falters. That’s an unfair burden for a single high-risk program to bear.

Let’s dive in. Our focus will be on the science, but we’ll first set the stage. Our driving goal when looking at any biotech company or program is to bet the science, not the hype.

Two years ago the company set an internal goal of “400 in 5″, essentially promising to drive EPS in support of a sustained stock price of $400 USD by 2017. They came close during the biotech bubble that burst earlier this year. The stock is holding its’ own at around $320 USD. The “400 in 5″ goal is in place irrespective of the success or failure of the anti-Lingo program, which cannot read out pivotal clinical trials until at least mid-2018. With that in mind we can deconstruct the CS analysis, and create our own. Importantly, our analysis drastically de-risks the impact of the anti-Lingo program on the trajectory of BIIB growth, while leaving room for very attractive upside if this program hits.

The CS analysis correctly estimates that oral MS drugs will take over an increasing % of market share running from 2014 through 2020. No argument there, and BIIB will take the bulk of this market with Tecfidera, per multiple analysts. But CS believes that the “pipeline focus” is on the anti-Lingo antibody program to will help drive the stock price as the program matures. A few comments:

1) Analyst and/or investor focus on the anti-Lingo program is a sign of pipeline weakness, not strength. Where, one might ask, is the rest of the pipeline?

2) The program is very high-risk (and thus high return) for multiple reasons beyond the inherent weakness of being in Phase 2.

3) Management recognizes the oversized risk of the program, and will not tether stock performance to this program, instead they will act to de-risk the pipeline and performance.

Let’s look at these points one by one. First, the portfolio and pipeline. We agree that top-line growth will continue to be robust, driven by Tecfidera in the expanding orals segment of the market. We believe that the Daclizumab program is likely to succeed (the data being shown at AAN this week is very good) but it seems likely that this drug will compete for the declining injectable biologics market share with Tysabri. Maybe not, if it is successfully positioned for JC virus antibody positive patients, and can hold off the orals. Ocrelizumab may successfully evolve into the successor for Rituxan, an anti-CD20 antibody pulled from the MS market by Genentech/Roche because of exposure to generics competition. STX-100, an excellent program for fibrosis, is emerging into a rapidly evolving IPF treatment landscape (pirfenidone, nintedanib), and we’ll see if the company can eventually steer this drug into other indications, such as systemic sclerosis. The hemophilia biologics Eloctate and Alprolix are approved and launch-ready, with a consensus view that these will pull in 500MM over the first full year of sales, rising to 1BB by 2018. That’s already baked into the current forecasts.  The rest of the programs are as high risk as the anti-Lingo program, so let’s be conservative and assume half or more of these programs eventually fail. Point #2 is that the anti-Lingo program is high risk and can fail for a variety of reasons. At least three can be articulated. First, the therapeutic hypothesis, that axonal regeneration can be induced by a therapeutic in the setting of MS, has never been demonstrated. So there is an inherent biology risk. Second, the preclinical data package supports the hypothesis that blocking Lingo will improve myelin sheath regeneration and axonal function after insult or injury. However the preclinical package using MS animal models is very weak. Finally, the technical hypothesis, that sufficient quantity of antibody can be delivered across the blood-brain barrier in a robust and reproducible manner, patient to patient, has not been demonstrated. So there is an inherent technical risk. It’s also critical to note that the optic neuritis trial, the first Phase 2 to read out, perhaps addresses the therapeutic hypothesis (we could debate this, but won’t) but simply fails to address the technical hypothesis. Focusing investor attention on a Phase 2 readout in optic neuritis as a surrogate for efficacy in MS is a shell game that will go bad quickly if that Phase 2 trials comes in with negative results.

So we agree with CS that anti-Lingo antibody might work in rrMS, and it might not. We disagree that this program should be the focus of interest in the pipeline. We disagree outright with a few of their more outlandish predictions, including the statement that anti-Lingo “has potential in SPMS” the progressive and untreated form of the disease. There is no support for this statement. And while we agree that anti-Lingo is likely to be used in combination with other BIIB MS drugs, trials supporting such use are a very long way away. There is no basis to evaluate such a statement at this time. Finally, instead of concluding that pipeline focus on the anti-Lingo program is a positive, as CS does, we see this as a sign of a fundamentally weak BIIB pipeline.

Should we be surprised? Let’s consider that BIIB has not successfully developed a novel internal program since Avonex and Amevive, well over 15 years ago (yes there is Peligry, but that’s just pegylated-interferon, still, they did develop it). What else? Rituxan came from Idec. Tysabri came from Elan. Tecfidera came from Fumapharm. Daclizumab came from PDL Biopharma/Abbvie. Ocrelizumab came from Genentech/Roche. Long acting Factors XIII and XI came from Syntonix Pharmaceuticals. STX-100 is a BIIB moelcule but had to leave for 5 years in order to be successfully developed by Stromedix. In the meantime the Immunology Department has produced no drugs since it’s inception in the mid-80s, well over 20 years ago. The oncology experiment (BIIB San Diego) produced no drugs. The BIIB hemophilia group will produce no new drugs (more on this below). The medicinal chemistry effort has produced no drugs (although we think they will). The BIIB neurology research group has produced no drugs outside of the interferon space, although they are getting closer (anti-Lingo, BIIB037). So why is this company even competitive, indeed dominant, in MS?

The answer is simple and compelling. BIIB excels in the development of in-licensed, clinical stage MS programs. Look at what they’ve brought in and then brought to registration: Tysabri is the single best MS drug available (nothing else is even close); Tecfidera is the single best oral MS drug, and again it’s not even close; Daclizumab will present an extraordinary efficacy/safety profile, and so on. Let’s also consider that while BIIB was accumulating and developing these assets, their competition was developing cladribine, alemtuzumab (campath), lemtrada, aubagio and other hideous potions. Even Novartis came razor close to missing with Gilenya, a nicely efficacious drug that has a challenging toxicity history

Perhaps anti-Lingo antibody will join the BIIB parade of success in MS, but company management is not counting on it. When management set a goal of “400 in 5″ in 2012, they meant it, which means they cannot wait for anti-Lingo or any other early Phase 2 program to mature. This is our final point from above, that management will de-risk the pipeline. This means they have 2 choices, and they have been excellent at executing on either or both of these choices:

1) Buy a late clinical stage MS asset/company.

2) Cut costs in order to manage EPS aggressively.

A third possible outcome of course is that they will do both. A very interesting question is: what attractive MS asset/company could BIIB buy? There are some very compelling answers, and maybe we’ll share these, but not today. A less interesting question, because the answer is so obvious, is where to cut. Let’s go back to those hemophilia drugs, brought in on a wave of enthusiasm for the much broader hematology space. What happened? When costs needed to be trimmed a “strategic review” quickly revealed that hematology was not so attractive after all. So the hemophilia R&D group was slashed, and only the clinical programs retained. Note further that those Factor XIII and Factor XI drugs are utlilizing very valuable and expensive bio-manufacturing capacity for the company. What might happen here? BIIB could sell the programs for 10-20x annual sales to Bayer or Novo Nordisk and keep the manufacturing rights for 5 years or more. We’re just guessing, but we also think it’s a very good bet.

The other obvious target is the Immunology group. A possible hint here is that a new department has been formed, carrying the name Remodeling and Repair or something similar. The department is built around the very interesting Phase 2 fibrosis program STX-100, mentioned above. A simple decision would be to move the few Immunology clinical assets (the anti-TWEAK and anti-CD40L antibodies) under this new department, and jettison the Immunology Research efforts. Such a move would mimic what was done in the hematology space, and would further move the company further away from basic Research, which historically has failed to move therapeutics forward, and further toward Development: in-licensing, clinical execution, regulatory execution and bio-manufacturing, the company’s true core competencies.

Will BIIB do any of these things? We have no idea. But we have watched this company for a long time, and if top-line results fail to drive EPS to the goals promised, the company will act decisively to control the bottom line. Personally, we expect to see an acquisition in short order, rather than further cuts. Just to reinforce what we said at the beginning: the proposed corporate strategy fundamentally de-risks the impact on the anti-Lingo program on the company fortunes, leaving intact the potential for a large upside if that program performs well in the clinic.

disclosures: PDR was a senior member of BIIB’s Immunology department for a long time, and retains both positive and negative biases. PDR is also long BIIB stock.

stay tuned

Our TIM-1 paper on T cell trafficking has published in Immunity

Sugarcone Biotech is pleased to congratulate our collaborators Gabriela Constantin and colleagues on the publication in Immunity of the paper entitled

TIM-1 Glycoprotein Binds the Adhesion Receptor P-Selectin and Mediates T Cell Trafficking during Inflammation and Autoimmunity by Stefano Angiari, Tiziano Donnarumma, Barbara Rossi, Silvia Dusi, Enrica Pietronigro, Elena Zenaro, Vittorina Della Bianca, Lara Toffali, Gennj Piacentino, Simona Budui, Paul RennertSheng XiaoCarlo Laudanna, Jose M. CasasnovasVijay K. Kuchroo, and Gabriela Constantin.

published online ahead of print today, April 3 2014 DOI:

The paper makes extensive use of antibodies and proteins developed by SugarCone founder Paul Rennert, and Biogen Idec colleagues. This elegant work details a previously unknown function of TIM-1 in regulating T cell movement in the inflamed vasculature, thereby controlling local inflammation. This new biology complements the role previously described for TIM-1 in mediating lung allergic responses. Alongside our recently published work in Ebola virus cellular infection, we begin to appreciate the role of TIM-1 in diverse aspects of infection, immunity, chronic inflammation and autoimmunity. See for more on this important protein.

Here is the summary of the paper from Immunity:

Figure thumbnail fx1



  • •TIM-1 mediates Th1 and Th17 cell capture and rolling on P-selectin in vitro
  • •TIM-1 is a major P-selectin ligand controlling T cell adhesion in inflamed vessels
  • •Both mucin and IgV domains of TIM-1 are required for the interaction with P-selectin
  • •TIM-1-mediated adhesion controls autoimmune and inflammatory disease development



Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.


Creating a New Therapeutic Focus

In 2012 we were engaged by a large local biotech company to evaluate a new therapeutic area. This effort was driven by the desire of the client to move aggressively into a new suite of diseases. We began by doing a deep dive into the client’s existing portfolio in order to identify assets already in development that could be directed to novel diseases. Concurrently we began a comprehensive review of preclinical and clinical stage assets available for partnering or in-licensing. Finally we engaged in pathological pathway analysis to identify novel targets for discovery programs. This effort, initiated and completed within two quarters, led to the eventual acquisition of a private company and its Phase 2 clinical stage assets, for nearly 100MM $USD. Based on our analyses the client also started several new discovery and preclinical development programs to complement the clinical stage acquisition.

Cautionary Tales from Human Microbiome Frontier

The concept of symbiotic microbiomes (yes, plural) influencing our health seems now, in hindsight, to be obvious, and the fact that the science has caught up to the folk medicine has all sorts of people buzzing. Some of the buzz is well informed (see below), some not, but all in all we are making progress understanding a few of the ways in which our vast mucosal environment interacts with the outside world. At the same time its fair to say that we know very little yet, and have a long way to go. Some recent findings drive this point home.

We can think of the frontier mentioned in the title in two ways. One, maybe obvious, is to think about the frontier of science, as this is where we find ourselves as the technology to do the some of this work was not widely available until recently (e.g. affordable deep sequencing). More subtly, we can think of the mucosal environments – oral, pulmonary, digestive, excretory, reproductive – as frontier environments where self interacts with non-self in an exploratory manner, that is, not confrontational a priori. There is a lot at stake: pathogen recognition and defense, nutrient uptake, metabolic regulation, waste disposal, on and on.

It makes sense that there are tightly controlled and very complex rules of engagement. The new findings I want to review touch on some of these rules and suggest layers of control and organization that we really don’t understand yet. Secondarily, we can study these systems with an eye on drug discovery.

Back to back papers in the December 16/26 double issue of Nature identify a critical pathway for the development of regulatory T cells (Tregs) in the gut. Data from the Ohno lab in Japan and the Rudensky lab in NYC paint broadly similar stories of the role of the specific commensal bacteria in fostering Tregs (see references 1 and 2, below). Both papers show that the fatty acid butyrate stimulates the development of Tregs. This in itself is not a new finding. Butyrate is a major energy source in mammalian metabolism and not surprisingly it’s production is driven by commensal bacteria, notably the abundant Clostridia class of bacteria (some species within Clostridia are pathogenic, but that’s a different story). Again, it’s not particularly surprising that one of the most abundant mammalian commensals gives off good vibes in the form of fatty acids that support a quiet immune system. The papers differ in some curious ways, in particular, the Ohno paper states that the induction of Tregs was limited to the gut, while the Rudensky papers highlight Treg production in the lymph nodes and spleen, but not the colon. Regardless, the reason these papers made it into Nature is that they identify the mechanism by which butyrate induces Treg differentiation, and this is by inhibiting a histone deacetylase (HDAC IIa) thereby allowing for the specific acetylation (and therefore activation) of DNA elements that support Treg differentiation, notably at the FoxP3 promoter and enhancer.


But before we all run out and start swallowing a bunch of butyrate capsules and subject ourselves to butyrate enemas (yes, both are available), lets be clear about what these papers are saying and what they are not saying. First, we are dealing here with inbred mouse strains on carefully defined diets. Translation of the results to outbred humans on diverse diets is not so straightforward. That said, the results support eating a high fiber diet, which will yield plenty of butyrate and related fatty acids. Second, the papers agree on one thing very specifically, which is that the generation of Tregs in the gut is a local phenomena, specific to the colon (large intestine, south of the caecum). This makes sense of course, as that is where the Clostridia are cranking out the fatty acids. The application of these findings to colonic disease, notably Ulcerative Colitis, is worth exploring. But broadening the scope to include general health, well-being and immune serenity is not warranted – despite the pile on by the Supplements and Wellness Industries.

A very different story just came out in PNAS (reference 3), and this one concerns the response of different populations to a gut pathogen found in the gastric mucosa (lining of the stomach). The bacterium Helicobacter pylori is found in about half of the human population worldwide. H. pylori is a causative agent of gastric adenocarcinoma in a small percentage of the people who are infected, less than 1%, although hotspots are known. One such hotspot was studied by a team from Vanderbilt who found that the higher incidence of H. pylori induced precancerous inflammation correlated with the presence of a European strain of the bacterium infecting an Amerindian population in Columbia. In contrast, an African strain of H. pylori infecting the descendants of African slaves nearby did not cause inflammation and cancerous lesions. The investigators conclude that H. pylori is mainly pathogenic when it occurs in a population distinct from that with which it co-evolved. So, a fine line between commensal and pathogen is drawn.

Ok, one more.

The gut microbiome has been implicated in the development of Th17 effector T cells, at least in mice. This is interesting in light of where we started, with the generation of Treg cells, since in some ways Tregs and Th17s are the result of different developmental pathways that T cells take. Note that the first two studies reviewed were focused on extrathymic (in that case, colon-specific) Treg generation. Mice that are raised with no pathogens in their environment, including their food, which is irradiated, don’t develop very many Th17s as a percentage of the total T cell population. Since Th17 cells are associated with diseases (including rheumatoid arthritis (RA), psoriatic arthritis (PA), psoriasis, inflammatory bowel disease) it seems reasonable to ask whether a Th17 inducing microbiota is linked to any particular disease. Littman’s lab at the Rockefeller in NY has done exactly that (reference 4). Newly diagnosed RA patients were found to carry the intestinal bacterium Prevotella copri at much higher levels (75%) than PA patients (37%) or healthy control patients (21%). This association of a specific pathogen with an autoimmune/chronic inflammatory disease is very striking. When mice were infected with a rodent-compatible strain of P. copri they developed pronounced intestinal inflammation, but not arthritis. Still, the intestinal inflammation was associated with the induction of Th17 cells, and so the hypothesis that this may underlie more systemic inflammation (e.g. RA) is still reasonable.

There are some problems with the story. The clinical development of IL-17 targeting drugs has shown that these do very well in PA and psoriasis, perhaps in inflammatory bowel disease, but they have failed to show sufficient benefit so far in RA. So at the level of drug discovery the link of an intestinal pathogen to Th17 T cells producing IL-17 and then to the disease, RA, seems to falter.

Thinking more broadly, the application of microbiome studies to drug development is in its infancy, and I think there is some reason for optimism as these studies become more sophisticated. The H. pylori and P. copri studies mentioned make it clear that many factors influence the response of a given population or individual to their microbioma. One interesting approach, the use of fecal transplantation to treat severe diarrhea and also Crohn’s disease, has made it into early clinical trials. Isolation of the critical components that reset the immune system in the local (inflammatory bowels diseases) and systemic (RA and other non-gut inflammatory diseases) settings is going to take significant time and effort, so we’ll have to stay tuned.

1) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature,
2) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature,
3) Human and Helicobacter pylori coevolution shapes the risk of gastric disease, PNAS
4) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, elife,

Inflammation, autoimmunity & oncology drug development questions for 2014: Lupus

Lupus and lupus nephritis update

The title includes the word “update” but that may be a bit generous. A dive into the American College of Rheumatology (ACR) abstracts shows that there is not much to update ( Progress with new therapeutics remains slow.

Most patients are treated with various combinations of cytotoxic agents and immunosuppressants. These include prednisolone, mycophenolate mofetil, tacrolimus, cyclophosphamide, and azathioprine among others. Unlike the situation in RA, we do not have a new suite of drugs for systemic lupus erythrmatosis (SLE) and lupus nephritis (LN) patients.

Newer therapies can be grouped into 2 classes. The most effective class includes the B-cell depleting antibodies rituximab (anti-CD20, aka Rituxan) and epratuzumab (anti-CD22). Clinical trials report consistent and durable improvement in patient symptoms and perhaps even rate of flares. In 2012 the ACR included Rituxan use in its treatment guidelines for patients with advanced diseases (grades III-IV). Rituxan in combination with cyclophosphamide or other standard of care is currently in clinical trials for use in SLE and LN. Epratuzumab is being developed by UCB and Immunomedics and is currently in phase 3 for SLE, with data due in 2015. Certainly the available clinical data indicate that this drug will find use in the treatment of lupus.

The second class consists of the BAFF/Blys and April antagonists. Belimumab (brand name Benlysta), developed by HGS and then acquired by GSK, is an antibody to Blys, a B cell growth and survival factor. Belimumab continues to report long term benefit for patients with generally mild to moderate SLE. There is consistently improvement in patient symptoms by the SLEDAI and BILAG outcome scores, reduction in proteinuria, and in some cases a reduction in the dose of steroids required to control diseases flares. Blisibimod, a peptibody inhibitor of Blys, had updated results from SLE trials, showing reduced proteinuria and Ig levels from the PEARL-SC trial. However, outcome data from that trial was lacking. This drug from Anthera has had a mixed track record in terms of efficacy and so the jury will remain out until the phase 3 data are reported. Other drugs in the space have failed outright, including atacicept, a TACI receptor fusion protein that antagonizes both Blys and April. Toxicity associated with this drug, and lack of efficacy, halted development.

Following the outright failure of the Interferon alpha antagonists a year or more ago, new drugs are few and far between. One of these reported at ACR is AMG811, an anti-interferon gamma antibody from Amgen. This drug appears to have significant adverse event issues, and no sign of efficacy in an early clinical trial. However Amgen is still recruiting for phase 2 trials in cutaneous lupus and SLE with renal involvement. Another Amgen drug, AMG557, is an anti-B7RP-1 (aka ICOSL) antibody which will be interesting to track.

Again, this is an underserved area in terms of new and effective drug development, and it may be we have to rely of the B cell inhibitors and Bly inhibitors for the foreseeable future. Following the failure of many therapeutics over the past few years, we appear to be in a slow period for clinical development. The question we can ask for 2014 and beyond is pretty simple: what will be the new therapeutic hypotheses for lupus and lupus nephritis?

Inflammation, autoimmunity & oncology drug development questions for 2014: RA

I think we’d all agree that 2013 was an exciting year for biotech and pharma drug development. New drug approvals, great late stage clinical trial results and exciting scientific data gave us all a wealth of topics to think about and discuss. There will be much more of this in 2014 and we can expect the excitement to continue. In the middle of all this however sits a big pile of unresolved questions and a plethora of diseases for which new therapies remain few of lacking. I want to pull a few things off that pile and have a look. What follows is a short list of drug development questions in the fields of inflammation, autoimmunity and oncology.

1) Will the use of biologics for Rheumatoid Arthritis (RA) begin to taper?

The blockbuster TNF antagonists Remicade, Enbrel and Humira continue to dominate the market for disease-modifying RA therapies (DMARDs). These drugs, other anti-TNF drugs, Stelara (anti IL-6 antibody), Orencia (CTLA4 fusion protein) and Rituxan (CD20 antibody) have transformed RA patient care to the point that the Rheumatologist’s goal has become disease remission.

Two challenges to the dominance of biologics were brought forward in 2013. One was the hypothesis that “triple therapy” – the use of a combination of the old and cheap chemical drugs methotrexate, sulfasalazine and hydroxchloroquine was just as effective as a TNF antagonist with or without methotrexate. This debate played out at the American College of Rheumatology conference in November. The consensus view that emerged was that triple therapy was effective for patients with mild RA who could tolerate the regimen. The problem is that triple therapy is very unpleasant and compliance can be very poor, especially in younger patients. The debate, while energetic, does not seem to have had an impact on the biologics market in RA.

The second challenge was brought on by the approval of Pfizer’s Jak2 inhibitor, a once-daily oral drug. Orals are considered the holy grail of RA drug development, allowing patients to move off of therapies that require either IV injections (in a health care setting) or subcutaneous injections (in a health care setting or self-administered). All approved biologics for RA are injectable drugs.

I reviewed Pfizer’s Jak2 inhibitor Xeljanz (tofacitinib) a while ago.

As discussed in that earlier post, Xeljanz showed impressive efficacy in RA clinical trials, and as approved by the FDA for use in methotrexate-refractory patients. This second-line label meant that patients did not have to try a biologic first, they could go directly to this nice, convenient once-a-day oral. So what happened?

Not much. Physicians balked at some of the side effects, and payers balked at the cost. The result was that this presumed blockbuster oral drug has posted very poor sales to date. It may be that Xejanz gains traction over time, we’ll have to see, but already we can take away several interesting lessons. One is that physicians have gotten comfortable with biologics, and being an oral drug does not automatically confer advantage. The second, which is really an old lesson, is that drug efficacy is paramount, and new drugs need to offer better efficacy. This is especially true if they are bringing some side-effect baggage along with them.

Is anything else in development that can challenge the established biologics in the near term? I think the short answer is no. Apremilast, Celgene’s PDE4 inhibitor, has trialed well in psoriatic arthritis and psoriasis, but did poorly in RA trials, so poorly that scheduled trials were terminated or withdrawn. Other Jak inhibitors and Syk, BTK and other inhibitors are currently in RA trials, but these are years away from approval. Some, like the Syk inhibitors fostamatinib from Rigel/Astra Zeneca and PRT062607 from Portola/Biogen Idec, have already failed.

Perhaps the next hurdle for the RA biologics will be the launch of biosimilar products, essentially generic versions of the antibody or protein. Thats a topic for another time.

In section 2 we will turn to an autoimmune disease that remains very poorly treated.