Category Archives: Novartis

Brodalumab for Psoriasis – what a mess

Let’s agree that the headline “Suicide Stunner” – penned by John Carroll for FierceBiotech – can never auger anything but very bad news, and never more so then when it is used to describe clinical trial results. Released on the Friday before the long US holiday weekend, bookended to the announcement of positive news on it’s PSCK9 program, Amgen stated that it was walking away from an expensive co-development program with AstraZeneca, basically washing it’s hands of the anti-IL-17 receptor (IL-17R) antibody brodalumab because of suicidal tendencies and actual suicides that occurred in the Phase 3 psoriasis trials. Brodalumab is under development for the treatment of plaque psoriasis, psoriatic arthritis and axial spondyloarthritis. Amgen stated that they believed that the approval label for brodalumab would contain warning language regarding suicide risk, and this would limit the success of the drug. By using such language while pulling the plug Amgen has essentially put AstraZeneca in the position of having to prove to the FDA that there is no suicide risk.

Holy crap.

Note here that we are not talking about a psychiatric drug, where the risk of suicide might be the consequence of trying to re-align an aberrant central nervous system. Instead we are talking about a drug that targets autoimmune disorders by blocking the action of T cells. This is not a biology linked to psychiatric health, at least not as we understand it today (more on this later).

Backing up: in April 2012, AstraZeneca and Amgen announced a collaboration to jointly develop and commercialize five clinical-stage monoclonal antibodies from Amgen’s inflammation portfolio: AMG 139, AMG 157, AMG 181, AMG 557 and brodalumab (aka AMG 827). The drivers for the collaboration were Amgen’s biologics expertise, the strong respiratory, inflammation and asthma development expertise of MedImmune (AstraZeneca’s biologics division), AstraZeneca’s global commercial reach in respiratory and gastrointestinal diseases, and the shared resources of two experienced R&D organizations

Under the terms of the agreement, AstraZeneca paid Amgen a $50MM upfront payment and the companies shared development costs. The breakout was as follows: AstraZeneca was responsible for approximately 65 percent of costs for the 2012-2014 period, and the companies now split costs equally. Amgen was to book sales globally and retain a low single-digit royalty for brodalumab. Amgen retained a mid single-digit royalty for the rest of the portfolio with remaining profits to be shared equally between the partners.

It gets even more complicated. Amgen was to lead the development and commercialization of brodalumab (and AMG 557, see below). Amgen was to assume promotion responsibility for brodalumab in dermatology indications in North America, and in rheumatology in North America and Europe. AstraZeneca was to assume promotion responsibility in respiratory and dermatology indications ex-North America. AstraZeneca remains responsible for leading the development and commercialization of AMG 139, AMG 157 and AMG 181. We’ll touch on these other antibodies at the very end.

Back to brodalumab. On balance, Amgen was on the hook for the development and commercialization costs, direct, indirect and ongoing, for dermatology indications in the US and also rheumatology, which in this case refers to psoriatic arthritis and axial spondyloarthritis. On the other hand, AstraZeneca was on the hook for commercialization in respiratory indications worldwide, and dermatology ex-US. This is interesting because brodalumab failed in its’ respiratory indication, moderate to severe asthma, and failed late, in a Phase 2b patient subset trial. So, on balance, much of the overall development cost seems to have shifted back onto Amgen over time (this is not to say that the companies would not have changed terms mid-term, they may have).

Two weeks ago I chaired a session on “Biologics for Autoimmune Disease” at the PEGS conference on Boston. In my opening remarks I used psoriasis as an example of an indication in which we were making clear and important progress, including with IL-17-directed therapeutics. Indeed, psoriasis is now a “crowded” indication commercially, with antibodies and receptor fusion proteins targeting the TNFs, IL-6, IL-12, IL-17, and IL-23 pathways all showing at least some activity. Notably, IL-17 and IL-23 targeting drugs appear to offer the greatest benefit in clearing psoriatic plaques. These pathways intersect in myriad ways, not all of which are well understood. This cartoon shows the effector cytokines and the receptors are expressed by diverse cell types, including dendritic cells, macrophages, T cells, and keratinocytes in the dermis.

IL-17 and friends

In simplistic terms, IL-6 triggers IL-12 and IL-23, and IL-23 triggers IL-17. As mentioned, the IL-17 and IL-23 targeting agents have great efficacy in psoriasis. Amgen and AstraZeneca were preparing an NDA (new drug application) for FDA submission based on results from three large Phase 3 studies. Here are the listed Phase 3 programs for brodalumab:

broda 1

I suppose those Phase 3 studies in psoriatic arthritis will now be tabled or transferred to AstraZeneca. For the sake of completeness here are the earlier studies:

broda 2

Certainly the clinical program was a robust one. So, what went wrong? Amgen R&D head Sean Harper summed up Amgen’s thinking about the suicide issue in the press release: “During our preparation process for regulatory submissions, we came to believe that labeling requirements likely would limit the appropriate patient population for brodalumab.”

The news aggregator and commentary website UpdatesPlus had this to add, questioning whether this result was “bad luck, bad target or victim of brodalumab’s efficacy: Despite high efficacy in Phase 3 studies, whispers of suicidality associated with brodalumab started to emerge at AAD.  At the time Amgen suggested this was related to disease however the company refused to comment on total rates and whether events were seen across arms … The question is whether Amgen is being hyper-cautious or whether the risk of suicidality is especially concerning.  Questions also emerge around the cause of risk – is this a spurious cluster of events unrelated to brodalumab; is suicidality perhaps related to relapse from the excellent efficacy associated with brodalumab after withdrawal (remember most patients exhibited at least PASI 90 on treatment but durability was very poor upon withdrawal); or perhaps suicidality is related to blocking the IL-17RA (note that suicidality has not to our knowledge been reported for the IL-17A ligand mAb Cosentyx) … One final point is whether regulators will now reevaluate suicide risk of IL-17 related molecules as a class – much greater clarity of brodalumab data is required to make a judgement.” That’s quite a nice summary from UpdatesPlus.

FierceBiotech’s report added “AstraZeneca would face some stiff competition if it decides to move forward solo on the drug. Novartis is already well in front with its IL-17 program for secukinumab, approved in January as Cosentyx. Eli Lilly has also been racking up positive late-stage studies for its IL-17-blocking ixekizumab, trailed by Merck’s MK-3222 and Johnson & Johnson’s IL-23 inhibitor guselkumab.”

Still, brodalumab demonstrated remarkable efficacy in psoriasis – Amgen and AstraZeneca went so for as to include a PASI100 score in one of their trials, meaning 100% clearance of psoriatic plaques, and the drug would have shown well against the best of breed, which today is likely Novartis’ anti-IL-17 antibody secukinumab. It is crowded space however, with antagonists targeting multiple nodes in the IL-17/IL-23 axis, alongside the biologics mentioned earlier.

Here is the current landscape from CiteLine (including brodalumab):

CiteLine

All in all, a tough crowd, and one that Amgen likely felt it could not face with a compromised label.

Let’s go back to the question posed above: bad luck, bad target or victim of superior efficacy? “Bad luck” suggests a statistical fluke in the data, potentially caused by the generally higher rates of suicidal tendencies observed in the moderate to severe psoriasis patient population. “Victim of superior efficacy” is in a sense a related issue, since the suggestion is that the loss of responsiveness to the drug, or a relapse, triggers a suicidal response as plaques return. Neither of these statements is really formulated as a hypothesis, and it doesn’t matter, as we don’t have the actual trial data yet with which to perform hypothesis testing.

“Bad target” is the most worrisome suggestion, and this can be formulated as a hypothesis, formally, the null hypothesis is that targeting the IL-17 receptor does not cause suicidal tendencies. Unfortunately, we still can’t test the hypothesis, and it seems likely that having the actual data won’t really help, that is, the study is probably not powered to reject that particular null hypothesis. So, what do we know? A few things, as it turns out.

First is that a link between the immune system and the nervous system is well established, although much of the focus has been on the role of neuronal enervation on immune responses. But clinically at least, the picture is muddier than that. High dose IL-2 can cause neurotoxicity, even hallucinations, according to Dr. Kathleen Mahoney, an oncologist at Beth Israel Deaconess and the Dana Farber. But what is really interesting is what else happens: “Some IL-2 treated patients can have odd dreams, really crazy dreams, and they last for weeks after treatment, long past the time when IL-2 would still be present in the body”, Dr. Mahoney said. Interferon alpha therapy is associated with pathological (severe) fatigue and also depressive symptoms that develop after 4–8 weeks of treatment. Of note, preventive treatment with anti-depressants, in particular serotonin reuptake inhibition attenuates IFN-alpha-associated symptoms of depression, anxiety, and neurotoxicity. Some researchers have suggested (controversially) that anti-TNF antibodies can control depression. Such anecdotal clinical observations suggest that we really do not yet understand the immune system connection to CNS activity.

On the other hand, antagonism of cytokine activity, and particularly of the cytokines IL-6, IL-17 and IL-23, has not been associated with neurological symptoms. For example the anti-IL-6 receptor antibody tocilizumab has shown a positive impact in rheumatoid arthritis patients quality of life scoring, which includes fatigue, anxiety, depression and a number of other factors. More to the point, the anti-IL-17 antibody secukinumab, that targets the IL-17 ligand (rather than the receptor), has not shown a link to suicide.

Clearly more data are needed, and it would not be surprising if the FDA began a drug class review if the data in the brodalumab trials warrant. They could cast quite a wide net given the complexity of this pathway, which overlaps with IL-6, IL-12 and IL-23. This casts a pall over the dermatology and particularly the rheumatology landscape, which is really waiting for novel therapeutics to move them successfully into new and important indications such as lupus and Type-1 Diabetes. The IL-17/IL-23 axis was to be that next great hope, and with luck we will still see these drugs moving out of their core indications of psoriasis and inflammatory bowel disease into new indications.

One last thing.

Those other antibodies – where are they now? A quick scorecard:

snapshot

It is readily seen that none of these are beyond early Phase 2, so it’s fair to say that the rest of the Amgen/AstraZeneca partnership has a long way to go. I, for one, wish the ongoing collaboration the very best of luck, particularly in the lupus indications, where we can really use some good news.

stay tuned.

Some Adjacencies in Immuno-oncology

Some thoughts to fill the space between AACR and ASCO (and the attendant frenzied biopharma/biotech IO deals).

Classical immune responses are composed of both innate and adaptive arms that coordinate to drive productive immunity, immunological expansion, persistence and resolution, and in some cases, immunological memory. The differences depend on the “quality” of the immune response, in the sense that the immunity is influenced by different cell types, cytokines, growth factors and other mediators, all of which utilize diverse intracellular signaling cascades to (usually) coordinate and control the immune response. Examples of dysregulated immune responses include autoimmunity, chronic inflammation, and ineffective immunity. The latter underlies the failure of the immune system to identify and destroy tumor cells.

Let’s look at an immune response as seen by an immunologist, in this case to a viral infection:

 immune viral

Of note are the wide variety of cell types involved, a requirement for MHC class I and II responses, the presence of antibodies, the potential role of the complement cascade, direct lysis by NK cells, and the potentially complex roles played by macrophages and other myeloid cells.

In the immune checkpoint field we have seen the impact of very specific signals on the ability of the T cell immune response to remain productive. Thus, the protein CTLA4 serves to blunt de novo responses to (in this case) tumor antigens, while the protein PD-1 serves to halt ongoing immune responses by restricting B cell expansion in the secondary lymphoid organs (spleen, lymph nodes and Peyer’s Patches) and by restricting T cell activity at the site of the immune response, thus, in the tumor itself. Approved and late stage drugs in the immune checkpoint space are those that target the CTLA4 and PD-1 pathways, as has been reviewed ad nauseum. Since CTLA4 and PD-1 block T cell-mediated immune responses at different stages it is not surprising that they have additive or synergistic activity when both are targeted. Immune checkpoint combinations have been extensively reviewed as well.

We’ll not review those subjects again today.

If we step back from those approved drugs and look at other pathways, it is helpful to look for hints that we can reset a productive immune response by reengaging the innate and adaptive immune systems, perhaps by targeting the diverse cell types and/or pathways alluded to above.

One source of productive intelligence comes from the immune checkpoint field itself, and its’ never-ending quest to uncover new pathways that control immune responses. Indeed, entire companies are built on the promise of yet to be appreciated signals that modify immunity: Compugen may be the best known of these. It is fair to say however that we remain unclear how best to use the portfolio of checkpoint modulators we already have in hand, so perhaps we can look for hints there to start.

New targets to sift through include the activating TNF receptor (TNFR) family proteins, notably 4-1BB, OX40, and GITR; also CD40, CD27, TNFRSF25, HVEM and others. As discussed in earlier posts this is a tricky field, and antibodies to these receptors have to be made just so, otherwise they will have the capacity to signal aberrantly either because the bind to the wrong epitope, or they mediate inappropriate Fc-receptor engagement (more on FcRs later). At Biogen we showed many years ago that “fiddling” with the properties of anti-TNFR antibodies can profoundly alter their activity, and using simplistic screens of “agonist” activity often led to drug development disaster. Other groups (Immunex, Amgen, Zymogenetics, etc) made very similar findings. Careful work is now being done in the labs of companies who have taken the time to learn such lessons, including Amgen and Roche/Genentech, but also BioNovion in Amsterdam (the step-child of Organon, the company the originally created pembrolizumab), Enumeral in Cambridge US, Pelican Therapeutics, and perhaps Celldex and GITR Inc (I’ve not studied their signaling data). Of note, GITR Inc has been quietly advancing it’s agonist anti-GITR antibody in Phase 1, having recently completed their 8th dose cohort without any signs of toxicity. Of course this won’t mean much unless they see efficacy, but that will come in the expansion cohort and in Phase 2 trials. GITR is a popular target, with a new program out of Wayne Marasco’s lab at the Dana Farber Cancer Institute licensed to Coronado and Tg Therapeutics. There are many more programs remaining in stealth for now.

More worrisome are some of the legacy antibodies that made it into the clinic at pharma companies, as the mechanisms of action of some of these agonist antibodies are perhaps less well understood. But lets for the sake of argument assume that a correctly made anti-TNFR agonist antibody panel is at hand, where would we start, and why? One obvious issue we confront is that the functions of many of these receptors overlap, while the kinetics of their expression may differ. So I’d start by creating a product profile, and work backward from there.

An ideal TNFR target would complement the immune checkpoint inhibitors, an anti-CTLA4 antibody or a PD-1 pathway antagonist, and also broaden the immune response, because, as stated above, the immune system has multiple arms and systems, and we want the most productive response to the tumor that we can generate. While cogent arguments can be made for all of the targets mentioned, at the moment 4-1BB stands as a clear frontrunner for our attention.

4-1BB is an activating receptor for not only T cells but also NK cells, and in this regard the target provides us with an opportunity to recruit NK cells to the immune response. Of note, it has been demonstrated by Ron Levy and Holbrook Khort at Stanford that engagement of activating Fc receptors on NK cells upregulates 4-1BB expression on those cells. This gives us a hint of how to productively combine antibody therapy with anti-4-1BB agonism. Stanford is already conducting such trials. Furthermore we can look to the adjacent field of CAR T therapeutics and find that CAR T constructs containing 4-1BB signaling motifs (that will engage the relevant signaling pathway) confer upon those CAR T cells persistence, longevity and T cell memory – that jewel in the crown of anti-tumor immunity that can promise a cure. 4-1BB-containing CAR T constructs developed at the University of Pennsylvania by Carl June and colleagues are the backbone of the Novartis CAR T platform. It is a stretch to claim that the artificial CAR T construct will predict similar activity for an appropriately engineered anti-4-1BB agonist antibody, but it is suggestive enough to give us some hope that we may see the innate immune system (via NK cells) and an adaptive memory immune response (via activated T cells) both engaged in controlling a tumor. Pfizer and Bristol Myers Squibb have the most advanced anti-4-1BB agonist antibody programs; we’ll see if these are indeed best-in-class therapeutics as other programs advance.

Agonism of OX40, GITR, CD27, TNFRSF25 and HVEM will also activate T cells, and some careful work has been done by Taylor Schreiber at Pelican to rank order the impact of these receptors of CD8+ T cell memory (the kind we want to attack tumors). In these studies TNFRSF25 clearly is critical to support CD8 T cell recall responses, and may provide yet another means of inducing immune memory in the tumor setting. Similar claims have been made for OX40 and CD27. Jedd Wolchok and colleagues recently reviewed the field for Clinical Cancer Research if you wish to read further.

Looking again beyond T cells another very intriguing candidate TNFR is CD40. This activating receptor is expressed on B cells, dendritic cells, macrophages and other cell types involved in immune responses – it’s ligand (CD40L) is normally expressed on activated T cells. Roche/Genentech and Pfizer have clinical stage agonist anti-CD40 programs in their immuno-oncology portfolios. Agonist anti-CD40 antibodies would be expected to activated macrophages and dendritic cells, thus increasing the expression of MHC molecules, costimulatory proteins (e.g. B7-1 and B7-2) and adhesion proteins like VCAM-1 and ICAM-1 that facilitate cell:cell interactions and promote robust immune responses.

I mentioned above that interaction of antibodies with Fc receptors modulates immune cell activity. In the case of anti-CD40 antibodies, Pfizer and Roche have made IgG2 isotype antibodies, meaning they will have only weak interaction with FcRs and will not activate the complement cascade. Thus all of the activity of the antibody should be mediated by it’s binding to CD40. Two other agonist anti-CD40 antibodies in development are weaker agonists, although it is unclear why this is so; much remains to be learned regarding the ideal epitope(s) to target and the best possible FcR engagement on human cells. Robert Vonderheide and Martin Glennie tackled this subject in a nice review in Clinical Cancer Research in 2013 and Ross Stewart from Medimmune did likewise for the Journal of ImmunoTherapy of Cancer, so I won’t go on about it here except to say that it has been hypothesized that crosslinking via FcgRIIb mediates agonist activity (in the mouse). Vonderheide has also shown that anti-CD40 antibodies can synergize with chemotherapy, likely due to the stimulation of macrophages and dendritic cells in the presence of tumor antigens. Synergy with anti-CTLA4 has been demonstrated in preclinical models.

One of the more interesting CD40 agonist antibodies recently developed comes from Alligator Biosciences of Lund, Sweden. This antibody, ADC-1013, is beautifully characterized in their published work and various posters, including selection for picomolar affinity and activity at the low pH characteristic of the tumor microenvironment (see work by Thomas Tötterman, Peter Ellmark and colleagues). In conversation the Alligator scientists have stated that the antibody signals canonically, i.e. through the expected NF-kB signaling cascade. That would be a physiologic signal and a good sign indeed that the antibody was selected appropriately. Not surprisingly, this company is in discussion with biopharma/biotech companies about partnering the program.

Given the impact of various antibody/FcR engagement on the activity of antibodies, it is worth a quick mention that Roghanian et al have just published a paper in Cancer Cell showing that antibodies designed to block the inhibitory FcR, FcgRIIB, enhance the activity of depleting antibodies such as rituximab. Thus we again highlight the importance of this sometimes overlooked feature of antibody activity. Here is their graphical abstract:

 graphical abstract

The idea is that engagement of the inhibitory FcR reduces the effectiveness of the (in this case) depleting antibody.

Ok, moving on.

Not all signaling has to be canonical to be effective, and in the case of CD40 we see this when we again turn to CAR T cells. Just to be clear, T cells do not normally express CD40, and so it is somewhat unusual to see a CAR T construct containing CD3 (that’s normal) but also CD40. We might guess that there is a novel patent strategy at work here by Bellicum, the company that is developing the CAR construct. The stated goal of having a CD40 intracellular domain is precisely to recruit NF-kB, as we just discussed for 4-1BB. Furthermore, the Bellicum CAR T construct contains a signaling domain from MYD88, and signaling molecule downstream of innate immune receptors such as the TLRs that signal via IRAK1 and IRAK4 to trigger downstream signaling via NF-kB and other pathways.

Here is Bellicum’s cartoon:

 cidecar

If we look through Bellicum’s presentations (see their website) we see that they claim increased T cell proliferation, cytokine secretion, persistence, and the development of long-term memory T cells. That’s a long detour around 4-1BB but appears very effective.

The impact of innate immune signaling via typical TLR-triggered cascades brings us to the world of pattern-recognition receptors, and an area of research explored extensively by use of TLR agonists in tumor therapy. Perhaps the most notable recent entrant in this field is the protein STING. This pathway of innate immune response led to adaptive T cell responses in a manner dependent on type I interferons, which are innate immune system cytokines. STING signals through IRF3 and TBK1, not MYD88, so it is a parallel innate response pathway. Much of the work has come out of a multi-lab effort at the University of Chicago and has stimulated great interest in a therapeutic that might be induce T cell priming and also engage innate immunity. STING agonists have been identified by the University of Chicago, Aduro Biotech, Tekmira and others; the Aduro program is already partnered with Novartis. They published very interesting data on a STING agonist formulated as a vaccine in Science Translational Medicine on April 15th (2 weeks ago). Let’s remember however that we spent several decades waiting for TLR agonists to become useful, so integration of these novel pathways may take a bit of time.

This emerging mass of data suggest that the best combinations will not necessarily be those that combine T cell immune checkpoints (anti-CTLA4 + anti-PD-1 + anti-XYZ) but rather those that combine modulators of distinct arms of the immune system. Recent moves by biopharma to secure various mediators of innate immunity (see Innate Pharma’s recent deals) and mediators of the immunosuppressive tumor microenvironment (see the IDO deals and the interest in Halozyme’s enzymatic approach) suggest that biopharma and biotech strategists are thinking along the same lines.

Biogen Idec, multiple sclerosis, and the anti-Lingo story

It’s AAN conference week, and we were looking around, trying to get caught up on multiple sclerosis after a few months dedicated to oncology. We stumbled across this analyst report, and just had to comment.

Credit Suisse (CS) recently released a deep-dive report on Biogen Idec’s (Nasdaq: BIIB) anti-Lingo antibody program, assigning between $5-10BB (billion) USD of the total relapsing/remitting Multiple Sclerosis (rrMS) market share to the program by 2020. The program is currently in Phase 2. This analysis, in part, supports CS’s current price target for BIIB stock at $400, leveraging presumed growth due to the view on continued success of the anti-Lingo program. In other words, positive news on this program will help support inflated multiples through 2018, when pivotal trials may actually read out. The analysis seems ill considered, misses key aspects of BIIB corporate strategy, and places undo pressure on an early Phase 2 program. Further, intense focus on the anti-Lingo antibody program in turn places pressure on two early phase clinical trials, one due to read out in 2H14. The implication is that the base case for the price target could be undermined if the very early clinical development of the anti-Lingo program falters. That’s an unfair burden for a single high-risk program to bear.

Let’s dive in. Our focus will be on the science, but we’ll first set the stage. Our driving goal when looking at any biotech company or program is to bet the science, not the hype.

Two years ago the company set an internal goal of “400 in 5”, essentially promising to drive EPS in support of a sustained stock price of $400 USD by 2017. They came close during the biotech bubble that burst earlier this year. The stock is holding its’ own at around $320 USD. The “400 in 5” goal is in place irrespective of the success or failure of the anti-Lingo program, which cannot read out pivotal clinical trials until at least mid-2018. With that in mind we can deconstruct the CS analysis, and create our own. Importantly, our analysis drastically de-risks the impact of the anti-Lingo program on the trajectory of BIIB growth, while leaving room for very attractive upside if this program hits.

The CS analysis correctly estimates that oral MS drugs will take over an increasing % of market share running from 2014 through 2020. No argument there, and BIIB will take the bulk of this market with Tecfidera, per multiple analysts. But CS believes that the “pipeline focus” is on the anti-Lingo antibody program to will help drive the stock price as the program matures. A few comments:

1) Analyst and/or investor focus on the anti-Lingo program is a sign of pipeline weakness, not strength. Where, one might ask, is the rest of the pipeline?

2) The program is very high-risk (and thus high return) for multiple reasons beyond the inherent weakness of being in Phase 2.

3) Management recognizes the oversized risk of the program, and will not tether stock performance to this program, instead they will act to de-risk the pipeline and performance.

Let’s look at these points one by one. First, the portfolio and pipeline. We agree that top-line growth will continue to be robust, driven by Tecfidera in the expanding orals segment of the market. We believe that the Daclizumab program is likely to succeed (the data being shown at AAN this week is very good) but it seems likely that this drug will compete for the declining injectable biologics market share with Tysabri. Maybe not, if it is successfully positioned for JC virus antibody positive patients, and can hold off the orals. Ocrelizumab may successfully evolve into the successor for Rituxan, an anti-CD20 antibody pulled from the MS market by Genentech/Roche because of exposure to generics competition. STX-100, an excellent program for fibrosis, is emerging into a rapidly evolving IPF treatment landscape (pirfenidone, nintedanib), and we’ll see if the company can eventually steer this drug into other indications, such as systemic sclerosis. The hemophilia biologics Eloctate and Alprolix are approved and launch-ready, with a consensus view that these will pull in 500MM over the first full year of sales, rising to 1BB by 2018. That’s already baked into the current forecasts.  The rest of the programs are as high risk as the anti-Lingo program, so let’s be conservative and assume half or more of these programs eventually fail. Point #2 is that the anti-Lingo program is high risk and can fail for a variety of reasons. At least three can be articulated. First, the therapeutic hypothesis, that axonal regeneration can be induced by a therapeutic in the setting of MS, has never been demonstrated. So there is an inherent biology risk. Second, the preclinical data package supports the hypothesis that blocking Lingo will improve myelin sheath regeneration and axonal function after insult or injury. However the preclinical package using MS animal models is very weak. Finally, the technical hypothesis, that sufficient quantity of antibody can be delivered across the blood-brain barrier in a robust and reproducible manner, patient to patient, has not been demonstrated. So there is an inherent technical risk. It’s also critical to note that the optic neuritis trial, the first Phase 2 to read out, perhaps addresses the therapeutic hypothesis (we could debate this, but won’t) but simply fails to address the technical hypothesis. Focusing investor attention on a Phase 2 readout in optic neuritis as a surrogate for efficacy in MS is a shell game that will go bad quickly if that Phase 2 trials comes in with negative results.

So we agree with CS that anti-Lingo antibody might work in rrMS, and it might not. We disagree that this program should be the focus of interest in the pipeline. We disagree outright with a few of their more outlandish predictions, including the statement that anti-Lingo “has potential in SPMS” the progressive and untreated form of the disease. There is no support for this statement. And while we agree that anti-Lingo is likely to be used in combination with other BIIB MS drugs, trials supporting such use are a very long way away. There is no basis to evaluate such a statement at this time. Finally, instead of concluding that pipeline focus on the anti-Lingo program is a positive, as CS does, we see this as a sign of a fundamentally weak BIIB pipeline.

Should we be surprised? Let’s consider that BIIB has not successfully developed a novel internal program since Avonex and Amevive, well over 15 years ago (yes there is Peligry, but that’s just pegylated-interferon, still, they did develop it). What else? Rituxan came from Idec. Tysabri came from Elan. Tecfidera came from Fumapharm. Daclizumab came from PDL Biopharma/Abbvie. Ocrelizumab came from Genentech/Roche. Long acting Factors XIII and XI came from Syntonix Pharmaceuticals. STX-100 is a BIIB moelcule but had to leave for 5 years in order to be successfully developed by Stromedix. In the meantime the Immunology Department has produced no drugs since it’s inception in the mid-80s, well over 20 years ago. The oncology experiment (BIIB San Diego) produced no drugs. The BIIB hemophilia group will produce no new drugs (more on this below). The medicinal chemistry effort has produced no drugs (although we think they will). The BIIB neurology research group has produced no drugs outside of the interferon space, although they are getting closer (anti-Lingo, BIIB037). So why is this company even competitive, indeed dominant, in MS?

The answer is simple and compelling. BIIB excels in the development of in-licensed, clinical stage MS programs. Look at what they’ve brought in and then brought to registration: Tysabri is the single best MS drug available (nothing else is even close); Tecfidera is the single best oral MS drug, and again it’s not even close; Daclizumab will present an extraordinary efficacy/safety profile, and so on. Let’s also consider that while BIIB was accumulating and developing these assets, their competition was developing cladribine, alemtuzumab (campath), lemtrada, aubagio and other hideous potions. Even Novartis came razor close to missing with Gilenya, a nicely efficacious drug that has a challenging toxicity history

Perhaps anti-Lingo antibody will join the BIIB parade of success in MS, but company management is not counting on it. When management set a goal of “400 in 5” in 2012, they meant it, which means they cannot wait for anti-Lingo or any other early Phase 2 program to mature. This is our final point from above, that management will de-risk the pipeline. This means they have 2 choices, and they have been excellent at executing on either or both of these choices:

1) Buy a late clinical stage MS asset/company.

2) Cut costs in order to manage EPS aggressively.

A third possible outcome of course is that they will do both. A very interesting question is: what attractive MS asset/company could BIIB buy? There are some very compelling answers, and maybe we’ll share these, but not today. A less interesting question, because the answer is so obvious, is where to cut. Let’s go back to those hemophilia drugs, brought in on a wave of enthusiasm for the much broader hematology space. What happened? When costs needed to be trimmed a “strategic review” quickly revealed that hematology was not so attractive after all. So the hemophilia R&D group was slashed, and only the clinical programs retained. Note further that those Factor XIII and Factor XI drugs are utlilizing very valuable and expensive bio-manufacturing capacity for the company. What might happen here? BIIB could sell the programs for 10-20x annual sales to Bayer or Novo Nordisk and keep the manufacturing rights for 5 years or more. We’re just guessing, but we also think it’s a very good bet.

The other obvious target is the Immunology group. A possible hint here is that a new department has been formed, carrying the name Remodeling and Repair or something similar. The department is built around the very interesting Phase 2 fibrosis program STX-100, mentioned above. A simple decision would be to move the few Immunology clinical assets (the anti-TWEAK and anti-CD40L antibodies) under this new department, and jettison the Immunology Research efforts. Such a move would mimic what was done in the hematology space, and would further move the company further away from basic Research, which historically has failed to move therapeutics forward, and further toward Development: in-licensing, clinical execution, regulatory execution and bio-manufacturing, the company’s true core competencies.

Will BIIB do any of these things? We have no idea. But we have watched this company for a long time, and if top-line results fail to drive EPS to the goals promised, the company will act decisively to control the bottom line. Personally, we expect to see an acquisition in short order, rather than further cuts. Just to reinforce what we said at the beginning: the proposed corporate strategy fundamentally de-risks the impact on the anti-Lingo program on the company fortunes, leaving intact the potential for a large upside if that program performs well in the clinic.

disclosures: PDR was a senior member of BIIB’s Immunology department for a long time, and retains both positive and negative biases. PDR is also long BIIB stock.

stay tuned

Merck’s MK-3475 Deals: Assets, Risk and Innovation in Immunotherapy Pipelines

The recent news that Merck will aggressively partner the anti-PD-1 program MK-3475 with competitors Pfizer and Amgen, and biotech Incyte, was a welcome recognition that the immunotherapy landscape is too vast and complex for most companies to handle alone. Companies that will succeed in this space over the long haul will position themselves to “sample” many assets and technologies, particularly in combination settings. Why? First, because many combination therapies will fail or be too toxic to use, second, therapeutic modalities will evolve rapidly or be replaced, and third, personalized oncology practice will fragment patient populations.

Merck’s anti-PD-1 antibody MK-3475 is an example of the first generation of immune checkpoint inhibitors, for which we have clinical data. Other first generation therapeutics are ipilimumab (Vervoytm) approved for the treatment of metastatic melanoma, and nivolumab, an anti-PD-1 antibody moving toward regulatory submission this year, both from Bristol Myers Squibb. There are other anti-CTLA4 and anti-PD-1 pathway antibodies in clinical development, just a bit behind, including antibodies to PD-L1 from Roche (RG7446) and Astra Zeneca (MEDI-4736) and to CTLA4 from Pfizer (tremelimumab). It is fair to say that Merck has generated intense buzz around the MK-3475 program, driven by excellent clinical data and an aggressive approval strategy.

If we look over the details of the Merck collaborations we see a convergence of technologies around combination therapy. The Merck/Amgen collaboration centers on developing the oncolytic vaccine T-Vec in combination with MK-3475. The therapeutic hypothesis is relatively straightforward. The immune response to vaccines built using tumor antigens is blunted, in part, because of the immunosuppressive signals induced by PD-L1 expression on tumor cells. So blocking PD-L1/PD-1 mediated immunosuppression may allow a more robust immune response to anti-tumor vaccination strategies. I’ll note here that Amgen recently reported Phase 3 results from their T-Vec trial in metastatic melanoma, hitting the primary clinical endpoint of durable response but just missing the secondary endpoint of improving patient overall survival, which is an endpoint that the immune checkpoint inhibitors do hit. So Amgen has clear motivation here to combine T-Vec with immune checkpoint inhibitors. In addition to the collaboration with Merck, Amgen also has a collaboration with Bristol-Myers Squibb to clinical evaluate the combination of ipilimumab and T-Vec in metastatic melanoma.

The collaboration between Merck and Incyte is also focused on disabling immunosuppressive signaling, in this case as mediated by inhibition of indoleamine 2,3-dioxygenase (IDO), a pathway that regulates T cell responses by depleting tryptophan from the local tumor environment. IDO also appears to regulate T cell activity in lymph nodes draining the tumor site. IDO inhibitors promote T cell effector function while reducing the immunosuppressive activity of T regulatory cells. Incyte’s IDO inhibitor INCB24360 is in Phase 2 clinical trials in metastatic melanoma and in ovarian cancer. In this case then we are considering the potential of dual immune checkpoint inhibition, blocking PD-1 and IDO simultaneously. Incyte already has a Phase 1/2 trial in metastatic melanoma of INCB24360 in combination with ipilimumab and a Phase 1 trial in late stage melanoma in combination with a tumor vaccine.

Merck’s MK-3474 collaboration with Pfizer is very interesting. A phase 1/2 combination trila with axitinib a VEGFR-selective multi-kinase inhibitor (Inlytatm), will be run in renal cell carcinoma. Axitinib is approved as second line therapy in kidney cancer, but the drug has limited potential as a long term therapy and has struggled to distinguish itself from the older multi-kinase inhibitor sorafenib (Nexavartm, from Bayer/Onyx). It is very hard to guess what such a trial will yield, but such combinations of targeted therapies (kinase inhibition in this case) and immune-checkpoint modulators will have to be tried. A recent example, combining ipilimumab and the BRAF inhibitor vemurafenib (Zelboraftm, from Roche) in metastatic melanoma induced unacceptable liver toxicity and was stopped after only four patients had received the combination. Ipilimumab and nivolumab have very different toxicity profiles, and attempts at different combinations are certainly warranted.

The collaboration between Merck and Pfizer also includes development of the combination of MK-3475 with Pfizer’s PF-05082566, an agonist anti-4-1BB antibody. 4-1BB is a potent immune stimulatory pathway that acts by boosting T cell activity. Of interest, PF-05082566 is already in a Phase 1 solid tumor (as monotherapy) and B cell lymphoma (as dual therapy, with Roche’s anti-CD20 mAb rituximab). Finally, Merck and Pfizer have an second agreement to investigate the combination of MK-3475 with palbociclib, a CDK4/6 inhibitor that recently showed encouraging data in advanced breast cancer, although without yet demonstrating an impact on overall survival. These types of combinations are designed to give that precise boost in efficacy, allowing at least some patients the benefit of long term responses that impact disease progression and survival.

Merck’s internal immunotherapy pipeline is thin but as we noted the other day they are beginning to target other pathways, in part via the Agenus/4-Antibody platform deal.

I titled this post “Risks, Assets and Innovation in Immunotherapy Pipelines” because Merck’s efforts around MK-3475 illustrate some clear themes in this space. One, already mentioned, is that going into this space solo is something no company, except perhaps Bristol Myers Squibb (BMY), can contemplate. Even BMY reached outside the company recently to license an anti-KIR antibody from Innate Pharma and to partner with Five Prime Therapeutics on antibody discovery. Why is BMY in such a dominant position? They were innovative (CTLA4 biology) and they have multiple assets including antibodies to CTLA4, PD-1, LAG-3, KIR, 4-1BB and PD-L1, with more on the way. Note that I’m not saying that BMY’s anti-PD-1 antibody nivolumab is better or worse than Merck’s MK-3475, nor do I much care which gets approval first, a race that lots of folks are watching. No one horse will win this field, which brings us back to assets and pipelines.

Beyond BMY, companies like Merck are aggressively partnering because as the immunotherapy field was developing they were less innovative, took fewer risks, and therefore have fewer assets in this space. Companies like Pfizer and Novartis that spent the last decade chasing one oncogenic mutation after another down the rabbit hole found themselves very quickly on the outside looking in. They are now buying and partnering to build portfolios.

And that’s just fine; further, this should be a “pull” environment that motivates the biotech community to generate an abundance of assets. Small biotechs are classically trying to be innovative (to differentiate), take risks (to return dollars on investment) and therefore develop new assets. These are the fundamentals that should drive further expansion of the immunotherapy portfolio across the industry. So how is biotech doing in this new landscape? It is a mixed picture. There is a dearth of new first and second-generation immunotherapeutics, a space that I believe should be asset-rich. This is why Five Prime, 4-Antibody and Costim were all able to do healthy deals relatively early in their development – there is just not a lot of competition.

What happened? Why aren’t there half a dozen anti-PD-1 and anti-PD-L1 antibodies looking for partners, or a dozen agonist antibodies to 4-1BB, OX40, and GITR, and multiple inhibitors of TIM-3 and Lag3? I think this is a case of history repeating itself. After remicade and etanercept were approved, biotechs ran from the TNF inhibitor space, all believing, incorrectly, that they would never be able to compete. Seven TNF inhibitors later, this class still dominates the rheumatoid arthritis market. I wonder if small biotechs are reluctant to follow-on with additional antibodies to the first and second-generation immune checkpoint space because they think they are “too late” – in other words, the value proposition is too risky. If so, I believe they are wrong. The appetite is clearly there, with large biopharma and antibody engineering companies hungry for assets to pull into their pipelines.

Instead, many small biotechs are trying to stay well ahead on the innovation curve, chasing new targets. The problem, as always, is that no one wants to fund that work, because the risk is very high. So the answer is to try to balance innovation and risk in order to create assets that investors will fund. Its a tricky proposition, but essential to biotech’s ability to continue contributing to immunotherapy, and driving value creation. That said, there are some terrific innovative programs out there, in the hands of focused and smart small companies. In the meantime, there are more companies seeking validated assets than there are good programs developing these assets. SugarCone Biotech spends a lot of time building strategic programs for biotechs and a lot of time matching quality assets with partners and investors, so we see this first- hand.

Why else would we need more assets? Straight off, the existing immune checkpoint antibodies ipilimumab and nivolumab induce some terrific responses, but the response rates could be improved. Second, development of the existing combination therapy of ipilimumab and nivolumab has been tricky, with excellent efficacy but troubling toxicity. Note here that BMY can tinker with the dosage and dose schedule of each agent in such combination trials, because they own them both. Less asset-rich companies seeking to develop combination therapy strategies either have to partner their programs (Merck, as discussed here, but AbbVie might be another good example), or acquire everything they can afford (Novartis).

We’ll be watching closely.

stay tuned.

Three high-altitude take aways from AACR14

The American Association for Cancer Research (AACR) 2014 meeting last week was high energy and high impact. We will dive into particular talks and specific pathways and indications in later posts, in the meantime I wanted to mention a few key themes.

1) Immunotherapy Versus The World.  That’s a deliberate overstatement of a subtle shift in emphasis from last year’s big meetings, where combinations of immunotherapy with just about anything else were the hot topic. This year there were several talks which emphasized the futility of chasing oncogenic pathways and all of their resistance mutations, one after the other, as opposed to letting the immune system do the work. However, it seems to me overly optimistic to believe that immune modulation can defeat a high percentage of patient  tumors on its own, as some speakers acknowledged. Combinations remain necessary although we will have to work past some notable failures in combo trials, such as the liver toxicity seen in the ipilimumab + vemurafenib combination phase 1, discussed briefly by Antonio Ribas               (see http://www.nejm.org/doi/full/10.1056/NEJMc1302338).

2) Immunotherapy Versus Itself.  In the ultimate battle of the titans, we see different immunotherapeutic modalities squaring off. This is a theme we’ve touched on before in this space, but the  competition is getting heated. In some indications, the leukemias, lymphomas, perhaps melanoma and some other solid tumors, there is an abundance of therapeutic choices, and the hard question of which therapy best suits which patient will ultimately need to be addressed outside of the context of clinical trial enrollment. Several talks really brought this message home. Roger Perlmutter of Merck (and before that, Amgen) envisions an important role for multiple immune therapies including bi-specific antibodies, chimeric antigen receptors (CARs), and immune checkpoint modulators like Merck’s anti-PD-1 antibody MK-3475.  For B cell lymphoma for example, there is blintumumab (Amgen), a potent bi-specific that redirects T cells to CD19+ tumor cells (and normal B cells), and there is CTL019, a CAR therapeutic which does much the same thing. The therapeutic profiles and toxicity differ, but the general idea is the same. One big difference is that while CTL019 drives T cell expansion and the development of long term anti-tumor memory, the bi-specific does not. Which is better? We don’t know yet. He did not mention that one might do well trying a course of BTK inhibition plus anti-CD20 antibody therapy, perhaps with restricted chemotherapy first e.g ibrutinib plus rituximab and chemo (R-BR or R-F). That choice comes down to efficacy, then toxicity, and eventually cost. Efficacy seems to be a home run with the CAR therapeutics, although these may run into trouble in the area of toxicity and cost calculation. Renier Brentjens discussed the CAR therapies being developed under the Juno Therapeutics umbrella. Acute lymphoid leukemia (ALL) can be treated with CAR 19-28z modified T cells to achieve a >80% complete response rate with >70% of patients showing no minimal residual disease, an outstanding result. However, 30% of treated patients end up in the ICU due to cytokine release syndrome and other toxicity, and recently patients in the ALL trials have died from unanticipated tox causes. Juno stopped 5 trials of their CAR technology last week due to toxicity. Apparently one patient died of cardiovascular complications and another of CNS complications (severe uncontrolled seizures) – it was hard to nail down as Dr Brentjens had gone off his prepared talk for these remarks which were off the cuff, so comment please if you have better info on this. Carl June discussed Dr Brentjens’ presentation, noting that the clinical results were really quite striking, and contrasting the CD28 motif-based CARs with the 4-1BB-based CARs (as designed by Dr June with U Penn and licensed to Novartis). He also stressed that in chronic lymphocytic leukemia (CLL) they have had patients who have failed up to 10 prior therapies, including rituximab and/or ibrutinib, and these patients have responded to CAR treatment. That’s very impressive data. The roadblocks to widespread use of CAR therapy however are large and include the toxicity, the “boutique” nature of the current protocols, the cost. Perhaps, Dr June suggested, CAR will end up as third line therapy, reserved for salvage therapy. I for one hope not.

Also in the immunotherapy space were hot new targets (e.g. CD47, OX40, GITR), advances on the vaccine front, and a few surprises. We’ll update soon.

3) The Medicinal Chemists Have Been Busy.  Not to be drowned out by the Immunotherapy tidal wave, small molecule therapies targeting specific oncogenic pathways continue to be developed and show promise. Most readers will be aware of the high stakes showdown (so billed) between Novartis, Pfizer and Lilly in the field of specific CDK4/6 inhibitors – in addition to bringing forward some really nice phase 2 data (we’ll discuss these another time) this “showdown” also illustrates that current portfolio strategy drives a lot of overlapping effort by different companies. As expected, much of the action is moving downstream in the signaling pathways, so we saw some data on MEK1 inhibitors and ERK1/2 inhibition. There were some new BTK inhibitors, nice advances in the epigenetics space, and some novel PI3K inhibitors. All grist for the mill.

stay tuned.

Hematological Malignancies – who will win the battle for patients? Part 2: BiTEs & CARTs targeting CD19

 We talked last time about the potential of Macrogenic’s DART bi-specific technology and we focused primarily on the T cell engaging bi-specifics, such as DART006, a CD3 x CD123 therapeutic. Lets just quickly state the hypothesis:

Bi-specific modalities will allow the targeting of the patients T-cell driven immune       system to a precise (tumor-expressed) antigen.

Other outcomes are possible. For example, the drugs might not work at all, or they might not be as specific as designed, or they act in ways we have not anticipated. In the context of the Macrogenics platform, we actually don’t know yet, as DART006 is very early in clinical development. BiTEs (Bi-specific T cell Engagers), Micromet’s version of a bi-specific technology, have been around a while and are further advanced. Acute Lymphocytic Leukemia (ALL) patients are now being recruited into Phase 3 clinical trials for blinatumomab, the anti-CD3 x anti-CD19 BiTE, with study completion due in July 2017. Micromet was acquired for 1.2BB dollars in January 2012 by Amgen. At the time Amgen R&D head Roger Perlmutter pointed to the Phase 2 clinical trial results in ALL as driving Amgen’s interest in the technology. Indeed, blinatumomab has produced some remarkable data in ALL. Historically, chemotherapy treated ALL patients had a complete response rate (CR) of about 38% and a median overall survival (OS) of 5 months. Rituximab (anti-CD20) didn’t perform much better than chemo. In the blinatumomab Phase 2 trial of adult relapsed/refractory (r/r) ALL, patients received a continuous IV infusion of blinatumomab for 28 days followed by 14-days off drug. Patients who responded could re-up for 3 more cycles of treatment or proceed to allogeneic stem cell transplantation (HCST). There was a very high rate CR of ~70% and the apparent absence of minimal residual disease (MRD) in many patients. Blinatumomab also impacted overall survival (OS) in ALL, as reported at the American Society of Hematology conference (ASH) in 2012 (Abstract #670). The CR was still 69% with most patients being MRD negative. The OS for responders was 14.1 months while the OS for non-responders was 6.6 months (so median OS = 9.8 months). Thirteen of the 36 patients enrolled were able to receive allogeneic HSCT.

The most common adverse events (AEs) were fever, headaches, tremors, and fatigue. Some patients experienced severe AEs (SAEs) such as cytokine release syndrome (CRS) and central nervous system events, including seizures and encephalopathy. One patient stopped treatment due to fungal infection leading to death. So, there is tox to consider.

A smaller study directed to salvaging patients with MRD despite prior treatments showed even more dramatic results: 16/21 patients became MRD negative and the probability for relapse-free survival was 78% at a median follow-up of 405 days. This is a remarkable result. An SAE led to one drug discontinuation.

Last year at ASH (Abstract #1811) we saw early results from an open label phase 2 study in r/r Non-Hodgkin’s Lymphoma (NHL), specifically, Diffuse Large B cell Lymphoma (DLBCL). Blinatumomab was administered by continuous IV for 8 weeks. Patients received either stepwise blinatumomab dosing of 9, 28, and 112 μg/d during weeks 1, 2, and thereafter, or received 112 μg/d throughout. All patients received prophylactic dexamethasone. So you can see some dose modifications here designed to reduce SAEs. After a 4-weeks off drug, patients who had responded could receive a 4-week consolidation cycle. 11 patients had been enrolled, 7 patients were evaluable for response. These patients had failed >2 prior therapies, including some patients who had relapsed after HSCT. The overall response rate (ORR) was 57% (14% CR plus 43% partial response (PR); 30% had progressive disease (all from the stepwise dose regimen). Note this is a very small sample size so every patient has a large impact on the response numbers. Ten of 11 patients had at least one grade ≥3 AE with 2 patients having grade 4 AEs (one patient with neutropenia and leucopenia; one with respiratory insufficiency). There were no drug related fatalities. Ten of 11 patients had central nervous system (CNS) AEs, mostly tremor, speech disorder and disorientation: in 5 patients these CNS toxicities were grade 3. The overall benefit/risk assessment suggested stepwise dosing (9, 28, 112 μg/d) to be the recommended dose.

Well first of all let’s point out here that blinatumomab has orphan drug status for ALL and NHL. That’s just to remind ourselves that these are pretty rare diseases with high unmet need. For ALL in particular this seems a good risk/benefit scenario. Within the diseases that make up NHL, DLBCL is not the most treatable (nor the least), and we note also that there is no attempt in the open-label phase 2 to characterize DLBCL into its subclasses – these have different oncogenic drivers and different outcomes for patients. Blinatumomab has also been in Phase in in other NHL classes, including Mantle Cell Lymphoma and Follicular lymphoma. Response rates were generally below current standard of care. Similarly, we can go back to look at rituximab, ofatumumab, and even ibrutinib, idelalisib and ABT-199 in NHL and likely find better treatment paradigms for r/rDLBCL than this, although maybe not as a monotherapy (see those earlier posts here: http://www.sugarconebiotech.com/?p=16).

Given the modality (CD3 x CD19 bi-specific) maybe the most interesting comparison is with Novartis’ CAR-T CD19 technology CTL019. CTL019 is the product of genetic engineering technology developed by Carl June’s group at U Penn, and is currently advancing in close to 20 clinical trials. The most advanced is a Phase 2 trial in r/r ALL, with a primary outcome completion due in July of 2015. As a quick reminder, CARs combine a single chain variable fragment (scFv) of an antibody (e.g. anti-CD19) with intracellular signaling domains from CD3 and 4-1BB into a single genetically engineered chimeric protein. The CD19-specific version of this technology is termed CTL019. Patient’s T cells are lentivirally transduced with a CAR, expanded ex vivo then infused back into the patient. Infusion of these cells results in 100 to 100,000x in vivo T cell proliferation, anti-tumor activity, and prolonged persistence in patients carrying CD19+ B cell tumors. Results from a pilot study in pediatric and adult r/r ALL were presented at ASH in 2013 (Abstract #67). Most patients received lymphocyte-depleting chemotherapy just a few days prior to infusion. This helps de-bulk the malignancy. In this small trial, 82% achieved a CR, 18% did not respond. Of the patients achieving CR, 20% subsequently relapsed. The rest of the patients are being followed and there has been no update. Responding patients all developed CRS, and about 30% of patients were treated with the IL6-receptor antagonist tocilizumab plus corticosteroids to control CRS symptoms.

We have a little more data on CTL019 from NHL studies, specifically r/r CLL. In December 2013, Phase 2 data were presented at ASH (Abstract #873).  Patients with r/r CLL received lymphocyte depleting chemotherapy and then one of several doses of transduced T cells (this is a dose study in that regard, although, cutting to the chase, no dose response was seen, so lets skip over that). Median follow-up for analysis was 3 months at which time the ORR = 40% (20% CR plus 20% PR, with clearance of CLL from the blood and bone marrow and at least a 50% reduction in lymphadenopathy. The toxicity profile was similar to that described above, dominated by treatable CRS. In a small Phase 1 study (Abstract #168), adult patients with r/r NHL including patients with chemotherapy-refractory primary mediastinal B cell lymphoma and DLBCL were enrolled. They received chemo to reduce disease burden and then an infusion of CTL019. 12 of 13 evaluable patients responded (ORR = 93%), the CR = 54% and PR = 38%. These are outstanding responses.

So let’s take a step back. It is a bit hard to compare these regimens head-to-head as they are in different stages of clinical development, the trails are generally small, and in the case of NHL, we have limited data on different types of lymphomas. At the same time we have to consider the larger landscape of therapies available, and ask ourselves how patients will best be served. In the case of the T cell engaging bispecific antibody landscape, it is very clear that robust anti-tumor responses are generated with very low concentrations of antibody. It seems to me very likely that there will be malignancies or subsets of malignancies where this technology will be very useful, including ALL, as we just saw. It will be important to either improve the antibody construction or alter the dose regimen sufficiently to reduce the toxicities associated with the BiTE therapeutic and competing modalities, including the DARTs. Now, people will claim that the tox is not so bad, and that it is only efficacy that matters, and that’s fine, but in the face of competition from CTL019 and other therapeutics, maybe this becomes a differentiating issue. This might also be different for the pediatric population (a critically important population in ALL) versus the adult population. When we look at the CAR T cell transduction technologies we need longer follow-up on the phase 2 studies but certainly anecdotal evidence from smaller trials suggests that some patients will experience long-lasting remissions. If this observational information holds up in the larger clinical trials than the technology will cement itself a place in ALL therapy, and perhaps in other diseases as well. We don’t know yet whether the BiTE therapeutic blinatumomab or the CAR therapeutic CTL019 will have a top-tier profile in NHL. This may change as more data become available, as some of the small studies are very encouraging. One of the interesting twists to the CAR technology is the question of how to make it widely available. In host-institutions (The U Penn system, MD Anderson, NCI) this is a centralized procedure, and in medical institutions world-wide, core patient cell facilities are commonplace. However it is rumored that Novartis at least wants to maintain the core facility model, as they picked up the Dendreon facility in Morris Plains New Jersey (at a bargain price) specifically to support CAR technology, and plan to duplicate those capabilities in Basel and in Singapore. Perhaps yesterday’s pickup of Israel’s Gamida Cell also plays into this centralized cell handling model. None of these complexities will bother the bi-specific therapeutics as these are injectable – that said, I’m not sure anyone will choose walking around with an IV pump for two months if they can avoid it.

So while these therapies and those like them are very potent, we will have to see how patients and providers ultimately use them.

Now, we’ve unfairly used blinatumomab and CTL019 to illustrate what are both pretty large areas of therapeutic development. We’ll come back to talk about the other players in the bispecific antibody and CAR spaces very soon.

stay tuned.

Immune checkpoint inhibitors – Part 2

In part 1 our focus was primarily on the PD-1 and CTLA4 pathways, where the biology is well understood and the drug development advanced. See that post here. In part 2 we look at drug development for some newer immune checkpoint targets, and this will drive us a little deeper into the scientific rationale for some of the less known pathways.

 I would argue that a good deal of the excitement around some recent deals (Novartis/CoStim and Agenus/4-Antibody) really is driven by the opportunity to get in early with novel targets. While the CoStim portfolio included PD-1 pathway related IP, I think the fact that this deal was so early stage suggests that novel LAG-3 and TIM-3 IP had a lot to do with driving interest. Similarly, emerging details from the BIOCIO conference indicate that Agenus (NASDAQ: AGEN), a somewhat obscure company, acquired novel LAG-3, TIM-3, OX40 and GITR antibodies as well as novel CTLA4 and PD-1 antibodies in its’ 4-Antibody acquisition. It would seem that this company, nominally a cancer vaccine company, is taking a huge leap forward by acquiring assets that could be combined with cancer vaccines. Barron’s labeled this a “genius move”, and I agree. This should make Agenus itself an attractive acquisition candidate. The Smith On Stocks Blog has much more on this (http://bit.ly/1ljmEzx).

 So I think it make sense to take on these targets one by one, do a quick update on the therapeutic rationale, and see who is leading the pack. Later we’ll fold this into a landscape analysis to try to understand where the large companies are heading.

We can start with a few targets that are represented by drugs in clinical development. Bristol-Myers Squib (NYSE: BMY), already loaded with anti-CTLA4 and anti-PD-1 programs, is moving their LAG-3 antibody ahead in both monotherapy and combination therapy trials. LAG-3 (lymphocyte activation gene, CD223) is a negative regulator of cell activation. It is expressed on various activated lymphoid cells, including T cells and NK cells that mediate tumor cell killing. The mechanism of action is the binding of LAG-3 to the MHC Class II complex expressed on antigen-presenting cells (B cells, monocytes, macrophages, dendritic cells, and other cell types). The high affinity binding event blocks cell proliferation and effector functions. LAG-3 is also an important mediator of the immune suppressive function of regulatory T cells. Of tremendous interest is the finding that LAG-3 is synergistic with other down-regulatory pathways, specifically PD-1 and TIM-3. As we will see this is driving much of the work on the design of combination therapy testing.

BMS-986016 is an anti-LAG-3 antibody from BMY currently in phase 1 testing in solid tumors and in B cell lymphomas. A very interesting study is NCT01968109: Safety Study of Anti-LAG-3 With and Without Anti-PD-1 in the Treatment of Solid Tumors. This is a Phase 1 dose escalation study of BMS-986016 alone or in combination of one of two defined doses of nivolumab (anti-PD-1). The primary endpoint is safety (AEs, SAEs, fatalities, lab abnormalities). There is also a cardiovascular risk assessment (QTc interval) among the secondary endpoints. Otherwise the secondary endpoints cover PK and exposure, immunogenicity, and RECIST defined tumor responses.

The point is that this is an instructive example of rational combination immunotherapy being investigated at Phase 1.

Other LAG-3 antibodies of potential use in oncology include Immutep’s IMP701, an antagonist antibody. IMP701 ought not to be confused with their depleting anti-LAG-3 antibody IMP731 (partnered with GSK for treatment of autoimmune disease) nor with their activating LAG-3-Fc fusion protein IMP321 (and how this thing works I have no idea). We have already mentioned that CoStim and 4-Antibody had LAG-3 programs and IP, but these would be preclinical. Somewhat better known for its’ anti-CD70 mAb (see below), arGEN-X also lists TIM-3, LAG-3 and VISTA antibodies in its’ preclinical portfolio. No doubt there are other early stage programs, they just are not readily visible yet. I wager that we will see many more of these popping up in the poster aisles at AACR and ASCO this year.

Two proteins related to PD-L1, B7-H3 and B7-H4, are also T cell inhibitory ligands. Both proteins are expressed on tumor cells and expression of B7-H3 or B7-H4 correlates with poor outcome for some tumor types. Both B7-H3 and B7-H4 are normally expressed on myeloid lineage cells including monocytes and dendritic cells. Preclinical tumor model data have supported efficacy with blocking antibodies to these ligands in vivo. The mechanism of action of these ligands is not well understood, as the receptors are not known, or at least cannot be confirmed across different laboratories

The Macrogenics (NASDAQ: MGNX) antibody to B7-H3 has reached clinical development. The phase 1 study in patients with advanced carcinoma, melanoma, or glioblastoma that overexpresses B7-H3. The antibody, MGA271, is licensed to Servier; Macrogenics recently received a milestone payment indicating that the expansion part of the Phase 1 trial had been initiated. Five Prime recently disclosed novel antibodies to B7-H3 and B7-H4 along with TIM-3 and VISTA, as mentioned previously.

With TIM-3 we have a landscape that is a bit earlier than LAG-3 – the excitement about this pathway is driven by the preclinical tumor model data and the translational medicine data. Like LAG-3, TIM-3 has been identified as co-expressed with PD-1, in particular on tumor infiltrating lymphocytes. Genetic data (knockout, transgenic, etc) clearly indicate that TIM-3 is an important immunoregulatory pathway. This is true as well of CTLA4, PD-1 and LAG-3 – the number of “brakes” on the system is remarkable and hints at how dangerous the immune system can be when it is unregulated, as it is in autoimmune, inflammatory, allergic and similar diseases. One of the interesting observations about TIM-3 is that it is ectopically expressed by some tumors and also by dendritic cells associated with tumors, i.e. within the tumor microenvironment. Therefore by blocking TIM-3 in the tumor setting, multiple responses may contribute to efficacy. A confounding issue in the TIM-3 field is the identification of the relevant ligand for TIM-3, with a number of ligands having been proposed (galectin-9, phosphatidylserine (PS), HMGB1). The binding motif for PS is well defined, while binding to the other proposed ligands is less well understood. In particular, TIM-3 and galectin-9 activities seem distinct, at least as far as we can understand from the published genetic data.

The proteins mentioned so far (CTLA4, CD28, CD80, CD86, PD-1, PD-L1, PD-L2, B7-H3, B7-H4, LAG-3, TIM-3, VISTA and TIGIT) are all members of the immunoglobulin (Ig) superfamily of proteins. Two additional protein families of critical importance in regulating immune responses are the TNF and TNF receptor families. Again the leader in this field, clinically at least, is BMY. The antibody BMS-663513 (urelumab) is an agonist anti-4-1BB antibody that functions by stimulating T cell activation. 4-1BB (CD137) is best known for contributing a signaling moiety to the CAR-T constructs (a discussion for another day). BMS-663513 is now in phase 1/2 testing in lymphoma patients. The antibody had previously completed a phase 2 study in melanoma, but that program was put on clinical hold following dose dependent liver toxicity. The new studies utilize lower doses, as a very low dose appears to be efficacious. An important differentiating feature of anti-4-1BB is the apparent ability to eradicate established tumors, at least in some patients. With this is mind it is encouraging to look forward to combination treatment studies. Pfizer also has an anti-4-1BB antibody in development, PF-05082566. This antibody is in a very interesting phase 1 clinical trial in solid tumors and B cell lymphomas, the latter patients being treated with and without rituximab co-therapy.

4-1BB biology is well understood, and agonist stimulation of this receptor induces CD8+ T cell activation, interferon gamma secretion, secretion of cytolytic compounds and recruitment of helper T cells. Of interest, 4-1BB is only expressed on T cells that have been activated through the T cell receptor and CD28, and so is specifically expressed on those T cells that would potentially have anti-tumor activity.

CD27 expression is also induced upon T cell activation, and the critical role of this receptor in immune responses is shown by patients who lack function CD27, as these patients are grossly immunosuppressed. The role of CD27 is subtly different from 4-1BB in that this receptor seems critical to activated T cell survival. Celldex (NASDAQ: CLDX) has developed an agonist anti-CD27 antibody, CDX-1127. In pre-clinical models, CDX-1127 had anti-tumor effects due to enhanced T cell activation. In addition various cancers, particularly B and T cell lymphomas, can express CD27 at high levels and the antibody may be able to such tumor cells directly and activate immune cell killing. Early data is promising, with no obvious toxicities.

The ligand for CD27 is CD70. Paradoxically (and stretching the limits of our understanding of these systems) CD70 is expressed at very high levels on a variety of tumor types, including solid tumors and hematopoietic cancers. Therefore, antibodies targeting CD70 to effect tumor cell killing have been developed. The most advanced of these are antibody drug conjugates, e.g. SGN-75 (SGEN) and MDX-1203 (BMY); there are other coming e.g. from Ambrx. In January. arGEN-X started a Phase 1b expansion study with ARGX-110, a novel cytotoxic anti-CD70 antibody. There are undoubtedly other antibodies in development.

A critical pathway found on cells that interact with T cells (dendritic cells, macrophages, B cells) is the CD40 pathway. Although early work is in the monotherapy setting, it is reasonable to speculate that agonists to CD40 would complement other approaches, such as cancer vaccines and modulators of T cell responses. Dacetuzumab, developed by Seattle Genetics (SGEN) was discontinued in phase 2b. The reason was unclear but appeared to involve both toxicity and futility analysis. Toxicities included cytokine release syndrome (common) and thrombosis (< 5% of patients), some liver toxicity and cytopenias. Most of these toxicities could be controlled with prophylactic agents. CP-870,893 (Pfizer) has completed Phase 1 clinical trials in melanoma, pancreatic cancer and other solid tumors. The current development in the US of CP-870,893 seems limited to trials being sponsored by U Penn’s Abramson Cancer Center. Of note, one of these trials is in combination with the anti-CTLA4 mAb, tremelimumab. The antagonist anti-CD40 antibody lucatumumab (NVS) competed a phase 1 trial in refractory follicular lymphoma in May of 2012. Here the hypothesis was that the bound antibody would activate cytotoxic killing of CD40+ tumor cells. This Phase 1 trial was in combination with chemotherapy (bendamustine).

At this point I would characterize the development of CD40 modulators in oncology as stalled, and awaiting a better understanding of the best antibody activity (and associated isotype) to use, the appropriate dose, and the most relevant tumor types.

Two final pathways to mention in this section are the OX40 and GITR pathways, the subject of headlines when Agenus bought out 4-Antibody. Several clinical stage therapeutics have been developed for these targets.

OX-40 (CD134) is another T cell survival pathway, activated downstream of CD28, and essential for the induction of anti-apoptotic proteins that keep activated T cells alive and functional. It may also be required for the establishment of the memory T cell pool. Stimulation of OX40 by the OX40-L or by agonist anti-OX40 antibodies enhances T cell responses.

AZN/Medimmune has developed a murine anti-OX40 agonist antibody designed to stimulate the immune system and block tumor suppression of the immune response. AZN’s OX40 collaborations are complex. AZN/Medimmune has partnered with AgonOx, a tech transfer spinoff from the Providence Cancer Center in Portland, OR. There are several clinical trials of anti-OX40 therapy underway at the Providence Cancer Center. AZN/Medimmune has also partnered with the Cancer Research Institute and Ludwig Institute for Cancer Research specifically to undertake clinical trials evaluating immunotherapy combinations including the MedImmune antibodies to OX40, and PD-L1 (MED14736), together with other agents within the CRI/Ludwig portfolio and the Cancer Vaccine Collaborative network of clinical immunologists and oncologists. There was one clinical trial co-sponsored by AgonOx and the Ludwig Institute, to study anti-OX40 in combination with ipilimumab. However, this trial has been suspended. According to AZN/Medimmune, the partnership trials are designed to complement their in-house clinical development effort.

GlaxoSmithKline (NYSE: GSK) gained rights to an OX40 antibody preclinical program from the MD Anderson Cancer Center’s Institute for Applied Cancer Sciences, as part of a deal focused on immune checkpoint antibodies that can trigger immune responses against cancer.

GITR was the other target grabbing headlines in light of the Agenus/4-Antibody deal. GITR is yet another cell surface receptor that is involved in amplifying T cell responses. It’s mechanism of action is distinct, in that GITR inhibits the suppressive activity of T-regulatory cells, thereby releasing effector T cells from active suppression. Secondarily GITR signaling is a pro-survival pathway for activated T cells.

GITR, Inc., is a biotech company spun out when Tolerx went under. The company is developing TRX518, an anti-GITR agonist antibody designed to enhance the immune response to cancer cells. A Phase 1 clinical trial in melanoma and solid tumors is currently recruiting after being released from clinical hold.

A few thoughts about these newer pathways. One is that some of them are very potent indeed (4-1BB, CD27) and we will have to watch carefully for toxicity issues. A second is that we can begin to outline rational combinations based on the biology of the pathways. For example, the CTLA4 and PD-1 antagonists may pair well with treatments that induce tumor cell death, thereby releasing novel tumor antigens that the newly stimulated immune system can then recognized. Some of the downstream T cell or antigen-presenting cell activators (CD40, OX40 as examples) may be better suited for use with cancer vaccine therapies.

There are two more classes of immune checkpoint modulators to consider. One consists of the IDO inhibitors. The second consists of the innate immune response modulators (TLRs, KIR, NKG2A). There are very exciting companies working in these areas, and these will be the subject of the next update.

as always please leave a comment or email me at rennertp@sugarconebiotech.com and follow @PDRennert

stay tuned.

Immunotherapy: Companies Chasing Immune Checkpoint Therapeutics

Excitement continues to build in the Immunotherapeutic drug development space following a recent flurry of deals. In the most recent, we saw Novartis acquire Costim Pharma(http://www.fiercebiotech.com/story/novartis-beefs-its-cancer-immunotherapy-pipeline-biotech-buyout/2014-02-17).

The deal making begs the question as to what, and who, is next. The immunotherapeutic space is very large and diverse so it’s important to focus. Lets start by defining the space broadly, using the following categories:

1) Immune checkpoint modulators. These are therapeutics specifically designed to alter the way the immune system interacts with a tumor. This field is exemplified by the anti-CTLA4 antibody ipilimumab (Vervoytm), from Bristol Myers Squibb and the anti-PD-1 antibody MK-3475, from Merck.

2) Tumor depleting antibodies. These are antibodies with inherent or engineered cell-killing (cytotoxic) activity. The first generation of cytotoxic antibodies is best illustrated by the anti-CD20 antibody rituximab (Rituxantm) from Roche. Engineered antibodies have increased cytotoxic activity (ofatumumab from GlaxoSmithKline being an important example). Other formats include bispecific antibodies that recognize 2 different tumor proteins (antigens) simultaneously. All of these antibodies act by recruiting the immune system to kill cells that they have bound. The antibodies do this by activating cell killing NK and CD8+ T cells and by activating the complement cascade.

3) Bispecific antibodies and fusion proteins that recruit T cells, NK cells or dendritic cells and bind tumor antigen, simultaneously. These molecules function similarly to tumor depleting antibodies, but have the added activity of specifically engaging relevant immune cell types.

4) Modified T cells. Made famous by the CAR-T (CAR-19) technology developed by Carl June at U Penn, this technology uses genetic engineering to take a patients T cells and repurpose them for high impact tumor cell recognition and killing.

5) Cancer vaccines. Exemplified by Provengetm from Dendrion, these are techniques designed to induce an immune response to the tumor by immunizing with tumor antigens along with immune stimulants. There are ex vivo approaches (like Provenge) and in vivo approaches.

Note that we have left out the antibody-drug conjugates (ADC) and radiolabeled antibodies since they theoretically do not require the immune system to attack the tumors. In this class the cytotoxic drug or radioactive payload is brought to the tumor by the antibody.

Today we will only discuss novel and next generation therapeutics in the first class: immune checkpoint modulators.

The field has been dominated by discussion of the clinical stage drugs being developed to target the CTLA4 and PD-1 pathways. Blocking CTLA4 shuts down this T cell inhibitory pathway by preventing interaction of CTLA4 with it’s ligands, called CD80 and CD86, which are expressed on B cells, dendritic cells, macrophages and related cell types. This then allows these ligands to productively interact with the stimulatory receptor CD28, also expressed on T cells, thereby promoting T cell activation. In the case of the PD-1 pathway, blocking PD-1 or its ligand (PD-1L) prevents another inhibitory pathway on T cells, although in this case the ligand is often found overexpressed on tumor cells, that is, this is an active pathway for immune evasion.

Just for review, these are the key late stage clinical therapeutics:

drug

target

phase

company

 
     ipilimumab      CTLA4      approved      Bristol Myers Squibb
     nivolumab      PD-1      3      Bristol Myers Squibb
     MK-3475      PD-1      3      Merck
     MPDL3280A      PD-L1      3 (not yet recruiting)      Roche/Genentech

These are all monoclonal antibodies (mAbs). The approval and phase 3 designations refer to advanced metastatic melanoma however all of these drugs are in multiple clinical trials for many tumor types. Of equal interest are the ipilimumab/nivolumab co-therapy trials also underway.

So these are very advanced drugs. Earlier clinical trials with agents targeting the CTLA4 and PD-1 pathways are shown here:

drug

target

phase

company

       
     tremelimumab    CTLA4   1 and 2, in various solid     tumors      Astra Zeneca          (AZN)/Medimmune
     MEDI4736    PD-L1   1 and 1/2 in various solid   tumors      AZN/Medimmune
     pidilizumab    PD-1   2: hematological cancers,   solid tumors      CureTech Ltd
     BMS-9365569    PD-L1   1: multiple cancers      Bristol Myers Squibb
     AMP-224    PD-1   1: advanced cancers      Amplimmune/AZN
     AMP-514    PD-1   1: advanced cancers      Amplimmune/AZN

Again these earlier stage drugs are all mAbs, except AMP-224, a Fc-PD-L2 fusion protein that serves as a soluble inhibitor of PD-1. Pidilizumab had been partnered with Teva, but was returned last year. According to Nature Reviews Drug Discovery (NRDD), CureTech is seeking a partner for this drug to advance its’ development (http://www.nature.com/nrd/journal/v12/n7/full/nrd4066.html). The NRDD report is free to read and download.

There are other immune checkpoint modulators in the clinic, and we’ll get to those in a bit. What has been really shocking is how aggressive large pharma and biotech have been in acquiring very early stage assets in the immune checkpoint area. The CoStim acquisition by Novartis is an excellent example. CoStim had no clinical assets, and probably not even any IND-enabled assets, and yet was scooped up. Why? And importantly, who is next?

“Why” is a pretty interesting question, and translates into “What did they own?” The answer in the case of CoStim was that they owned patents on novel antibody inhibitors of PD-1 and PD-L1/PD-L2. Possibly of greater importance, they owned intellectual property (IP) portfolios covering new checkpoint pathways, notably the LAG-3 pathway and the TIM-3 pathway. We have no clinical data yet on either of these pathways, but preclinical tumor models, and the expression profile of these pathways, suggests very strongly that they will be critical for the prosecution of specific tumor types. Therein lies the value of buying early into the science. Bruce Booth writing on the role of Atlas Venture in the CoStim deal, has a great take on this on the LifeSci VC blog (http://lifescivc.com/2014/02/immuno-oncology-startup-costim-pharmaceuticals-acquired-by-novartis/).

So are there other CoStim Pharmas just waiting to be scooped up? The question is critical for biopharma portfolio gurus trying to peer into the future, and for stock investors wondering who to bet on. That second category, stock investors, will be looking for public companies or venture owned companies about to go public. The recent surge in biotech IPOs has helped bring plenty of candidates into public view.

Lets have a look around, but as an organizing principal, we’ll let the biology of tumor immune evasion and response lead the way.

We briefly mentioned the ligands for CTLA4 (CD80 and CD86) and for PD-1 (PD-L1 and PD-L2). These proteins are all related by protein sequence, and are members of the B7 protein family. The receptors for these ligands are also related and can be considered members of the CD28 protein family. Lets start with these, and line them up:

Screen Shot 2014-02-23 at 4.27.58 PM

This image is from Drew Pardoll’s excellent review in Nature Reviews Cancer. This paper is free to read and download, and can be found here:                       http://www.nature.com/nrc/journal/v12/n4/full/nrc3239.html. At the top you see the PD-1 and CTLA4 pathways and corresponding ligands – note here that an activating receptor for PD-L1 and PD-L2 is proposed, although none has been found yet. At the bottom we see some newer members of the B7 family, B7RP-1 (ICOS-L), B7-H3 and B7-H4. There are both stimulatory and inhibitory pathways proposed. Not surprisingly, there have been a number of development deals across this spectrum of targets.

Novartis. We’ve already mentioned the CoStim/Novartis deal, which purportedly includes PD-1 and PD-L1/2 assets and IP.

Merck. Merck took the biopharma world by surprise a few weeks ago by announcing a suite of partnerships for MK-3475 anti-PD-1 mAb. The stance is bold and aggressive and shows that Merck recognizes the importance of anticipating combination therapy clinical practice and developing MK-3475 accordingly. The company is capitalizing on the momentum behind MK-3475 that has accelerated with FDA breakthrough therapy designation (for advanced melanoma) in April of last year and an aggressive rolling submission drug application, which should be completed by mid-year.

Merck plans to run clinical studies of MK-3475 in combination with axitinib, Pfizer’s small molecule kinase inhibitor for renal cell carcinoma. This deal is similar to the one that Merck did with GlaxoSmithKline (GSK) in December 2013, to pair MK-3475 with GSK’s kinase inhibitor, pazopanib, also in advanced renal cell carcinoma.

In a combination immunotherapy effort, MK-3475 will be paired with PF-05082566, Pfizer’s agonist mAb to the 4-1BB receptor. We’ll discuss 4-1-BB and related pathways later, as this is an interesting area. The combo therapy will be tested in multiple cancer types. In a similar effort, Merck will partner with Incyte to pair MK-3475 with INCB24360, an indoleamine 2, 3-dioxygenase (IDO) inhibitor, in patients with advanced or metastatic cancers. IDO inhibitors are a very hot subject, which we will tackle below. Finally, in collaboration with Amgen, Merck will combine MK-3475 treatment with Amgen’s investigational oncolytic immunotherapy talimogene laherparepvec, in patients with previously untreated advanced melanoma.

Merck also signed on with Ablynx in a very interesting deal to develop nanobody therapeutics to immune checkpoint targets. Nanobodies are derived from camelid (camels, llamas, etc) antibodies and have some nice intrinsic properties (small size, good pharmacodynamics). Of interest, the Merck deal specifies bi- and tri-specific nanobodies targeting different proteins.

Servier. In another very recent deal (February 13, 2014), French pharmaceutical firm Pierre Fabre licensed a peptide therapeutic directed to PD-1 from Biotech company Aurigene. This new therapeutic is IND-enabled, but clinical development has not begun. Servier also acquired rights to Macrogenic’s anti-B7-H3 mAb MGA271 in December 2011. B7-H3 is overexpressed by a variety of solid tumors (prostate, pancreatic, melanoma, renal cell, ovarian, colorectal, gastric, bladder, and NSCLC). It has been hypothesized that B7-H3 expression by tunors is a mechanism of immune evasion, however, since the receptor in unknown this remains a hypothesis. So, although an anti-B7-H3 antibody may have biological impact on the tumor, Macrogenics is taking no chances, and has engineered MGA271 for optimized interaction with cytotoxic immune cells, including NK cells, macrophages and CD8+ T cells. MGA271 is currently in phase 1, in patients with B7-H3+, refractory neoplasms.

Astra Zeneca. In October of 2013, AZN/Medimmune announced that it had acquired Amplimmune, a privately held company developing immune checkpoint modulators for oncology. This preclinical company’s assets included AMP-224, the Fc-PD-L2 fusion protein mentioned earlier, and AMP-514, an anti-PD1 mAb. In December of 2013, Amplimmune registered its first clinical trial for AMP-514, a phase 1 in patients with advanced solid tumors. As discussed in a column by FierceBiotech’s John Carroll “the widely acknowledged area for differentiation will be combinations … mAbs (anti-CTLA4 tremelimumab, anti-PD1 AMP514,  OX40 agonist MEDI6469) and … targeted therapies … AZN is gearing up for combination trials with Iressa & tremelimumab … AZN’s purchase of Amplimmune gained it access to other … targets … likely including another attractive checkpoint antibody to B7-H4”. You can see the article here:                     http://www.fiercebiotech.com/story/can-astrazeneca-catch-leaders-cancer-immunotherapy/2013-10-03

Amplimmune’s discovery portfolio covers many B7 family members and their patent portfolio includes both agonist and antagonist assets and IP. Within the database-visible patents there are claims to fusion proteins and antibodies targeting PD-1, PD-L1/2. B7-H3, B7-H4, “B7-H5”, ICOS and ICOS-L.

Bayer Healthcare. Late to the party is Bayer, who to date has not made a big play in immune modulatory drugs. The company took a step forward perhaps in a deal with Compugen (NASDAQ: CGEN), paying 10MM USD upfront in a collaboration/licensing agreement. The goal is to develop novel antibody based immune checkpoint regulators discovered by Compugen. While the company is secretive as to the specific targets, one may be TIGIT, a relatively new member immune regulatory protein with some very exciting preclinical biology.

Early stage assets like Compugen’s are hard to judge without the benefit of full due diligence. We can list some of the asset players however, and some are pretty easy to score just based on the prior reputation of the company:

–  Earlier this month Five Prime Therapeutics went on record as having novel ligands for B7-H3 and B7-H4 (http://www.biotech-now.org/business-and-investments/2014/02/bio-ceo-five-prime-therapeutics-company-snapshot#) among other targets. Five Prime has an antibody discovery and development deal with Adimab. As far as I can tell, none of these are visible in the patent databases to date. Five Prime recently went public (NASDAQ: FPRX).

–  Kadmon LLC, backed by the former head of Imclone, lists anti-PD-1 and anti-PD-L1 mAbs on its pipeline chart. However this company seems focused on other areas.

–  Locally, Third Rock funded Jounce Therapeutics is developing antibodies and proteins to undisclosed immune checkpoint targets. Jounce and Adimab have announced a collaboration to drive the antibody technology. It will of great interest to see if Jounce will take the IPO route over the next few years, or instead will be acquired while still private.

–  VISTA is another relatively new immune regulator being developed by privately held ImmuNext, in partnership with Johnson & Johnson.

–  In January of this year Johnson & Johnson’s Janssen unit agreed with BiocerOX Products to develop a new mAb to an immune checkpoint protein. The target was not released but is rumored to be PD-1.

–  By the way, J&J/Janssen really does seem to be taking a multi-pronged approach to get into this space. In late January J&J Innovation partnered with MD Anderson Cancer Center, as part of its “Moon Shots” oncology effort. The joint program will evaluate new combination therapies and identifying useful biomarkers for eight critical cancers. MD Anderson has a very similar agreement with Pfizer.

–  AnaptysBio, Inc has publicized a portfolio that includes an anti-PD-1 antibody, ANB011, and novel antibodies against other immune checkpoint receptors, including TIM-3 and LAG-3.

I’m going to assume that there are other CTLA4, PD-1, PD-L1 and PD-L2 assets out there in the hands of companies large and small. We’ll track the progress of these as they pop up, whether in the poster hall at AACR, or in press releases! Also, we will discuss companies targeting TIM-3 and LAG-3, along with 4-1BB, OX40, GITR, IDO, and various other interesting targets, next post.

 stay tuned.

ANTICIPATING NEW THERAPEUTICS AND FORECASTING TREATMENT TRENDS FOR ACUTE MYELOID LEUKEMIA – PART 1

 by Paul D Rennert, February 11, 2014

In looking at Acute Myeloid Leukemia (AML) we see a cancer field right on the cusp of change in clinical practice. Standard of care chemotherapy regimens and stem cell transplantation protocols have proven to be of limited utility, especially in older patients. However, potentially big advances in care are being made, with exciting news coming out regularly. As we move toward the spring Medical Conference season, we felt an overview of this rapidly evolving area of oncology would be timely.

AML is a rapidly growing cancer of myeloid lineage cells that proliferate in the bone marrow and interfere with normal hematopoiesis. AML typically arises in the context of defined genetic mutations. For example, translocations of chromosome 16 disrupt RUNX1 gene activity and are one of the several underlying causes of Core Binding Factor AML. CBF-AML). Since RUNX1 regulates the transcription of many genes, the effect of its disruption is complex. CBF-AML patients are generally responsive to chemotherapy initially, although up to half of these patients will relapse over time due to additional genetic mutations.

Mutation of the FLT3 protein is the most common genetic abnormality in AML, found in about 30% of patients. This is a genetic characteristic associated with poor prognosis. The most common FLT3 mutation, FLT3-ILD, is caused by an tandem duplication within the coding region of the gene. The resulting protein drives hyper-signaling and oncogenic cell responses. Mutations that change the active site of the protein, causing unregulated phosphorylation, have also been described. Mutations in the receptor tyrosine kinase c-Kit are also associated with oncogenic signaling in AML. Both of these pathways cause mutiple downstream effector pathways to be activated. The JAK2 mutations, commonly see in myelofibrosis and other myeloproliferative disorders, are rare in AML but when characterized can potentially be treated with Jak2 inhibitors.

According to a recent market research analysis                           (http://www.transparencymarketresearch.com/acute-myeloid-leukemia-therapeutics-market.html) a total of 62,226 new cases of Acute Myeloid Leukemia (AML) were recorded in 2010, with 95,000 predicted new cases for 2015 and nearly 130,000 predicted new cases in 2020. Note that as of February 2014 approved agents for AML remain limited to chemotherapeutics (http://www.cancer.gov/cancertopics/druginfo/leukemia#dal2). Despite the lack of new targeted drugs, the AML therapeutics market was nearly 240 MM USD in 2011. At the current rate of growth the AML market could reach over 700 MM USD by 2018. These numbers are based on the analysis of future AML drugs growing at a 17% compound annual growth rate from through 2018.

Numbers like these are continuing to drive intensive research into effective, novel therapies for AML. It only helps that in many cases such therapeutics find use in other hematopoietic diseases such as Chronic Myeloid Leukemia (CML) and in the B cell lymphomas, including Hodgkin’s Lymphoma and the non-Hodgkin’s Lymphomas (NHL).

 There is obvious unmet medical need for effective therapies in AML since this is a disease characterized by quick relapse after therapy with grim survival statistics. In some older patients, survival is as little as 1-1.5 years despite first and second line treatment regimens.

What’s exciting from the drug development and biotech investment perspectives is that the AML treatment landscape is advancing simultaneously across therapeutic modalities. This rapidly changing landscape give us a chance to look at targeted small molecule drugs, monoclonal antibodies (naked, bi-specific, radiolabelled, immunotherapeutic, ADC), targeted T cells and other novel technologies.

 We can then ask ourselves: who will the winners be in 5 years?

 A) Targeted small molecule drugs.

Lets just be clear upfront that the goal of these targeted therapies is to get patients who have relapsed, or are refractory to chemotherapy, to a complete response (CR) with minimal residual disease (MRD) so they can qualify for an allogeneic stem cell transplant (SCT). That’s a lot of acronyms but what this is really saying is that for most patients the goal is a modest one – we are not asking for a durable remission, at least not yet.

 A variety of established drugs are being tested in AML. Also, the identification of oncogenic mutations in FLT3 and cKIT has driven interest in developing new tyrosine kinases inhibitors (TKIs) for AML.

 Sorafenib (NexavarTM; Bayer and Onyx) is a dual targeting drug that blocks RAF signaling (and therefore the MEK>ERK signaling) and also the growth factor receptor tyrosine kinases VEGFR and PDGFR. The NCI is running a large phase 3 trial enrolling new onset pediatric AML patients (NCT01371981) with sorafenib being given in combination with various chemo regimens.  Bayer and Onyx are running several earlier phase AML trials. An interesting phase 1 trial in patients 18 or older combines sorafenib with plerixafor and G-CSF (NCT00943943). The idea here is to have the CXCR4 blocker (plerixafor) and the growth factor (G-CSF) flush tumor cells, and also tumor stem cells, from the bone marrow and lymph nodes so that they are more sensitive to sorafenib treatment. This trial is co-sponsored by Genzyme/Sanofi, which owns plerixafor.

Another interesting trial is the Phase 1/2 study of the combination of sorafenib, with vorinostat, and bortezomib (NCT01534260). Here we have a proteasome inhibitor and an HDAC inhibitor added to growth factor and signaling inhibition provided by sorafenib. This potent combination is being used in patients with a poor genetic risk profile, including FLT3-ILD positive tumors. This study is co-sponsored by Bayer/Onyx, Millennium/Takeda and Merck Sharp & Dohme Corp.

Bristol Myers Squibb is running an interesting trial (NCT01620216) in which AML and acute lymphocytic leukemia (ALL) patient samples are analyzed for sensitivity to drug treatment ex vivo, after a period on drug in the trial, as follows:

“An in vitro kinase inhibitor assay will be used to determine the sensitivity of primary leukemic cells to four kinase inhibitors/drugs:

Drug: Sunitinib, 50 milligrams (mg) qd, with or without food, for 4 weeks

Drug: Dasatinib, 100 mg qd…possible escalation to 140 mg qd for 28 days

Drug: Nilotinib, 400 mg twice daily for 28 days

Drug: Sorafenib, 400 mg (2 tablets) orally twice daily without food for 28 days

Drug: Ponatinib, 45 mg dose once per day

Sunitinib (Sutenttm; Pfizer) makes sense as a pan-growth factor receptor inhibitor; dasatinib (Spryceltm; Bristol Myers Squibb) is a Src and c-Kit inhibitor and is a reasonable choice for AML; nilotinib (Tasignatm; Novartis) is a pretty specific Bcr-Abl kinase inhibitor and is probably only being used for the ALL population – and even there only 25% of ALL patients carry this translocation; sorafenib we discussed earlier; ponatinib (Iclusigtm; Ariad) has a grab bag reactivity profile, hitting the BCL-ABL kinase, FLT3, RET, c-KIT and the FGFR, PDGFR and VEGFR growth factor receptor kinases. This is a dangerous drug, with a very narrow FDA approval in CML, and I suspect enrollment in this little exploratory trial will be stopped if possible.

If I had to guess I would say that this rather odd trial design has several goals. One is to look for signs of efficacy, although a month is pretty short duration. One might also look for patterns of resistance to therapy, which would be very interesting. Since this is BMY, I’d be surprised if they weren’t also looking at cell surface markers for possible immunotherapy treatment – more on this subject later.

Results from a dasatinib trial in CBF-AML were recently presented at the American Society of Hematology (ASH) conference (Abstract #357). Dasatinib was added to induction and consolidation chemotherapy in newly diagnosed AML patients. Unlike the rrAML population, the CBF-AML population can experience sustained periods of remission prior to relapsing, especially in younger patients. Since some of the relapses are driven by gain of function mutations in c-Kit, dasatinib should prevent at least those clones from becoming established. Early results looked good but longer term data are needed to see if this regimen will remain effective.

Imatinib (Gleevectm; Novartis) another Bcr-Abl, c-Kit and PDGF-R inhibitor, has been tested in multiple AML trials, but the results have not led to approval for use in AML. An interesting trial of the cytotoxic/immunomodulatory agent lenolidomide (Revlimidtm; Celgene) plus chemotherapy is being run by the NCI (NCT01246622). Lenolidomide has been approved for the treatment of a different bone marrow resident cancer, multiple myeloma (MM).

Anyway there is a lot of similar clinical trial work being done – using approved drugs in this new indication and looking for efficacy. This is ultimately good both for patients and the drug development companies.

Lets move on to some newer drugs in the pipeline. The FLT3 inhibitors give us a sense of the difficulty here, with low response rates as monotherapies.

Quizartinib (Ambit Biosciences; AMBI) remains stuck between phase 2 and 3 for relapsed/refractory (rr) AML. This drug is a FLT3 inhibitor with a somewhat tortured history, having been partnered for a time with Astellas, then returned, then running nicely in the clinic before running into disagreement with the FDA over approvable endpoints and safe dosage. In early December the company announced it would have to run a phase 3, likely with lower starting doses, in order to obtain FDA approval. Investors were hoping the company could file on its phase 2 trials. Notably, later in December Ambit showcased its’ quizartinib data from the FLT3-ILD rrAML trial, in which a 50% response rate (50% or greater reduction in leukemic blast cells) was reported with relatively low doses of drug. Unfortunately, it will be a while yet before more news becomes available about this drug.

In the meantime heavy hitter Novartis is already in phase 3 with its’ FLT3 and Protein Kinase C inhibitor midostaurin. The phase 3 in newly diagnosed patients is being run by the NCI (our tax dollars at work), along with The Alliance for Clinical Trials in Oncology and the Cancer and Leukemia Group (NCT00651261). A trial of midostaurin administered with or without bortezomib in adult rrAML patients is being run by Novartis and Millennium/Takeda (NCT01174888). Preliminary results were presented at ASH (abstract #3966). While response rates were impressive the toxicity was extreme, and this seemed to be due to the bortezomib dose, which was adjusted. Phase 2 trials in adult patients who carry c-KIt, FLT3-ILD, and various other mutation or cytogenetic markers are also underway (NCT01830361, NCT01846624). A phase 2b midostaurin  monotherapy study published several years ago showed modest improvement in AML patients with mutated FLT3; this study recognized the need for combination therapy to improve the clinical response (http://www.ncbi.nlm.nih.gov/pubmed/20733134).

Another FLT3 inhibitor, lestaurtinib, is the subject of 2 NCI sponsored trials in pediatric ALL/AML but drug development of this agent seems to have stalled when Teva bought Cephalon. Another FLT3 inhibitor is PLX3397 (Plexxikon) which has activity against  KIT, CSF1R and FLT3. This drug is in a phase 1/2 trial in adult rrAML (NCT01349049).

One of the major challenges for FLT3 inhibitors is breadth of action. These inhibitors work best on patients who have mutated FLT3 and are less effective in patients with normal FLT3. Also, secondary mutations have already been discovered in response to FLT3 inhibition. Specifically, in those patients who have mutations in the active site of the kinase, so-called gatekeeper mutations arise, conferring resistance to the drug.

A dominant theme in recent drug development for AML has been built on the observation that proteasome inhibitors can impact cancers of the bone marrow. Disruption of proteasome activity blocks a wide spectrum of cellular activities, and is particularly effective against rapidly dividing cells (like leukemic blasts) but also relatively quiescent tumor stem cells, that require specific proteasome-dependent signaling pathways (e.g. NK-kB). Bortezomib (Velcadetm, Millennium/Takeda) has shown activity in older patients when combined with chemotherapy. A phase 3 combination trial with sorafenib in newly diagnosed AML patients is underway, sponsored by the NCI (NCT01371981).

Carfilzomib (Onyx Pharmaceuticals) is in an early stage trial for AML, along with extensive trials in MM, B cell lymphomas, etc. The drug is furthest along in MM, now in phase 3 (NCT01568866). Early reports so far have suggested that this drug has an activity profile similar to bortezomib, but may have a better safety profile. This is an interesting drug (and company) to watch. They have a second generation oral version of carfilizomib, oprozomib, in phase 1 MM trials. Millennium/Takeda are developing ixazomib in MM and lymphomas. An AML trial is listed but not yet recruiting.

A third theme that we can follow in AML therapeutic drug development is the use of drugs that impact epigenetic gene regulation. Because AML is driven by genetic translocations, gene regulation at the level of chromatin structure is disrupted. There are two processes at work here that can be targeted. One is the aberrant methylation of CpG islands in gene promoter regions, which can be targeted by DNA methyltransferase inhibitors. The second is changes in the conformation of chromatin caused by dysregulated histone acetylation. This process can be therapeutically targeted using histone deacetylase [HDAC] inhibitors.

The HDAC inhibitor vorinostat (Zolinzatm, Merck) has been extensively studied in AML, and is currently in a phase 3 trial with chemotherapy for young patients with newly diagnosed disease (NCI; NCT01802333). Vorinostat monotherapy was generally ineffective, but combination with chemo agents proved much more potent. As detailed at ASH in December (Abstract #2684), newly diagnosed and rrAML patients were enrolled in a phase 2 expansion study. Of 75 patients, 57 patients achieved CR, and 7 achieved CR with incomplete platelet recovery (CRp), for an overall response rate of 85 percent. Median overall survival was 82 weeks and median event free survival was 47 weeks. For patients with the high-risk Flt-3 ITD mutation the 10/11 achieved CR and 1/11 CRp. The ORR = 100% in these patients. Their median overall survival was 91 weeks and median event free survival was 66 weeks. About 25% of the total patients in CR received SCT.

Other combination trials include the sorafenib trial mentioned above, and a trial in combination with antibody therapy (gemtuzumab ozogamicin) for rrAML (NCI; NCT00895934). This trial reported early results at ASH (Abstract #3936). The response rates ere encouraging and about 20% of patients obtained durable remission. There were significant toxicity issues. This drug is very likely to play a critical role in the evolution of combination therapy for AML. We’ll discuss antibody therapies further in Part 2.

Other important HDAC inhibitors in development for AML is panobinostat (Novartis). What’s interesting about the development campaign with this drug is the pairing in multiple trials with 5-azacitidine, a DNA methytransferase inhibitor. In such settings two modes of epigenetic regulation are being targeted simultaneously. One of these studies published findings last month                                 (http://www.nature.com/bcj/journal/v4/n1/full/bcj201368a.html) and demonstrated good tolerability and reasonable response rates. Clearly, this combination should move forward in the context of chemotherapy or other drugs. Of note the DNA methyltransferase inhibitor decitabine (Dacogentm, MGI Pharma) is already approved for AML. There was also a presentation on the HDAC inhibitor entinostat (Syndax Inc) with 5-azacitidine in myeloid neoplasia (Abstract #2777), and there are several clinical trials listed for AML, however this drug is mainly being used in solid tumor trials.

Other interesting drugs in this area include alisertib, an Aurora A kinase inhibitor (Millennium/Takeda) being tested extensively in B and T cell lymphomas and in solid tumors. There are several AML trials including a phase 2 trial completed by MLMN (NCT00830518). Selinexor, (Karyopharm) a selective inhibitor of nuclear export, in in phase 1 trial for advanced AML. Abbvie’s Bcl2 inhibitor ABT-199 is also in an AML trial.

If we take a step back we can appreciate that in small molecule development Novartis, Merck and Onyx are placing big bets in this therapeutic area. We’ll sort out the best looking therapeutics as we dig in a little deeper.

In Part 2 we’ll take a look at the biologics landscape, and begin to draw the bigger picture.

Oncology drug development questions for 2014: Combination therapies for B cell lymphoma

Part 1 – Ibrutinib and the development of combination therapies for B cell lymphoma

For physicians, patients, investors etc, major medical conferences are a way to check in on the progress of a company’s drugs in the context of the medical communities response to the data, i.e. the buzz. Negative buzz is generally pretty straightforward, reflecting poor results or unexpected toxicity in a clinical trial. Positive buzz should be (and often isn’t) more nuanced, as positive data, while great to see, need to be placed into the context of evolving clinical practice and the ever-present competition for patients. Results, positive or negative, need to be vetted for robustness: clinical trial stage, sample size, design; endpoint design; therapeutic window (the dose range between efficacy and toxicity); and duration of response.

Last year saw extraordinary advances in the treatment of B cell lymphoma, particularly the Non-Hodgkin Lymphomas (NHL) that include well known cancers like Chronic Lymphocytic Leukemia (CLL), Mantle Cell Lymphoma (MCL), indolent NHL (iNHL) and many others. This advances included small molecule therapeutics that target critical drivers of lymphoma cell proliferation and survival, novel antibodies (“naked”, enhanced, payload carrying), ex vivo modified patient T cells that attack lymphomas upon reinjection, and a variety of other modalities. It was interesting to see that the companies getting the most buzz varied during the year, with different companies “winning” different conferences. Be assured that in this context, winning reflects wins for the stock price! Winning in the medical marketplace is a whole different story.

With the medical marketplace in mind, a reasonable question for 2014 pops up when you step back and look at the breadth of the B cell lymphoma therapeutic landscape.

How will biopharmaceutical companies, physicians, and payers develop and use combinations of these therapies?

Lets think about the possible combinations. The most obvious are those that we are already seeing widely used, such as the combination of a small molecule inhibitor with a tumor-targeting antibody. One example is the combination of ibrutinib, a BTK inhibitor, and rituximab, an anti-CD20 monoclonal antibody. Ibrutinib was approved for treatment of relapsed/treatment refractory (rr) MCL in November 2013 under the brand name Imbruvica, and approval for rrCLL is expected soon (these indications were filed for approval together, in August 2013). Patients with relapsed/refractory small lymphocytic lymphoma (SLL) were included in the CLL arm of the clinical trial.

CLL is a good example of the power of combination therapy. Rituximab monotherapy in rrCLL/SLL produced overall response rates (ORR) in the range of 55% and a complete response rate (CR) of somewhere under 10%, depending on the trial. Note here that ORR and CR refer to assessments of tumor burden at a specific and predetermined time after treatment is initiated. A CR does not indicate a cure but rather is a measure of the degree of efficacy. The ORR and CR measurements are most meaningful when presented in the context of duration of response (DOR) or in the context of progression-free survival (PFS) or overall survival (OS).

Monotherapy of rrCLL/SLL with ibrutinib produced ORRs ranging from 70-80%, with CRs ranging from 0 – 10%. Duration of response was good, and there was a measurable impact on PFS. There are different classes of rrCLL patients, based on cytogenetic status. High risk CLL patients commonly carry a deletion on chromosome 17 (del17p) and/or other abnormalities. Such mutations predict poor prognosis for these patients. Last April, the FDA granted Ibrutinib Breakthrough Therapy Designation for high-risk rrCLL/SLL del17p patients based on achievement of a 50% ORR in these patients when given ibrutinib monotherapy.

Now to the combination of ibrutinib and rituximab (and a chemo agent, bendamustine). As discussed in earlier coverage of the American Society of Hematology Annual Meeting (ASH), linked here, treatment of high-risk CLL patients with the combination therapy produced an ORR of 95%, with 78% maintaining response through 18 months. While only 10% of the responses were designated CR, the long duration of the partial responses (PR) was a dramatic result.

The cost of Rituxan treatment for B cell lymphoma is generally quoted at ~10K/month but billed to insurance at about 5K monthly, so we are somewhere between 60-120K per year per patient in the US. Imbruvica will cost 130K per year per patient in the US. Note here that neither therapy, given alone, is considered curative. We don’t know yet what the durable remission rate will be for the combination therapy, where we define durable remission as no detectable disease (in the blood, lymph nodes, bone marrow) without maintenance therapy. Curative treatment means no disease in a patient who no longer requires drugs.

So it’s fair to say that these combination therapies will be very expensive and may need to be used for a long time. Given the current climate of cost control, especially outside of the US, what are companies doing to anticipate eventual pushback on premium pricing?

Just a quick reminder that Imbruvica (ibrutinib) is a Pharmacyclics/Johnson&Johnson (J&J) product and the Rituxan is a Roche product and further, that Roche has a next generation anti-CD20 antibody, obinutuzumab, recently approved for the treatment of CLL (including as first line treatment), under the brand name Gazyva. This antibody given in combination with a cheap chemotherapy agent, chlorambucil, produced an ORR = 78% and a CR of 28% in the phase 3 trial. This antibody was significantly better than Rituxan (rituximab) plus chlorambucil in the same clinical trial (ORR = 65%, CR = 7%). The trial was done in rrCLL patients including high-risk patients defined as del17p.

Another anti-CD20 antibody, ofatumumab from GSK, has been approved for second-line use in rrCLL. This drug, priced at 120K yearly, ran into reimbursement pressure in Europe and the UK as not showing sufficient benefit to justify the price. This is a hint of price pressures to come.

This is where I think things get really interesting. I spent some quality time on clinicaltrials.gov, trying to understand how companies competing in the B cell lymphoma space are looking ahead, the assumption being that one can do this by looking at the trials planned or underway for the top tier drugs. Many of the oral drugs in advanced development for B cell lymphomas are reviewed here.

Nearly all advanced oral drugs for B cell lymphoma have trials underway or planned with an anti-CD20 antibody. Most of these trials are done with rituximab, probably just reflecting the wide availability of this antibody. Perhaps some companies are sticking with rituximab in the belief that generic biosimilar forms of this antibody will become available in Europe (where it is now off-patent) and in the US (where patent protection expires in 2018), which may make combination therapy more widely available. The rituximab trials are not done in collaboration with Roche, with one notable exception which we will get to later.

There are 11 clinical trials listed as active that include ibrutinib with rituximab either alone or with various other agents. Some of these trials have already read out results:

TRIAL NUMBERPHASEDATE FILEDIBRUTINIB WITHINDICATION
NCT01980654210/24/2013rituximabuntreated FL
NCT0188056726/4/2013rituximabrrMCL
NCT0152051921/25/2012rituximabhigh risk CLL, SCL
NCT0161109035/15/2012rituximab/bendamustinerrCLL, rrSCL
NCT0177684031/24/2013rituximab/bendamustineuntreated MCL
NCT01479842111/1/2011rituximab/bendamustinerr DLBCL,MCL,iNHL
NCT0185575035/14/2013R-CHOPDLBCL-ABC
NCT0188687236/24/2013noneuntreated CLL
rituximab
v rituximab/bendamustine
NCT01974440310/28/2013R-CHOPrr iNHL
v rituximab/bendamustine
NCT0188685916/24/2013lenalidomiderrCLL, rrSCL
NCT0182956814/9/2013lenalidomide & rituximabrrFL
NCT0195549919/27/2013lenalidomide & rituximabrr iNHL

Note that FL is follicular lymphoma and DLBCL is diffuse large B cell lymphoma. DLBCL-ABC is a subtype. These are all types of B cell lymphomas. R-CHOP is rituximab plus a standard mixture of chemotherapeutic agents, and I may or may not have defined this correctly, suffice to say if it says CHOP then there is a potent mix of chemo being given; “v” means versus, that is, it is a comparator arm.

There are another seven or eight single agent ibrutinib trials also, but I did not include those here, so what we see all together is a full court press of clinical trials designed to show benefit of ibrutinib in multiple different B cell lymphomas, as first line or second line therapy. These trials will produce a tidal wave of data that, if positive, will by their sheer volume place ibrutinib at the top of the heap of B cell lymphoma oral agents. So, yes, I’m betting on Pharmacyclics (stock symbol PCYC) and J&J to win the marketplace, at least for the near term.

Ibrutinib development does not stop there. There are three trials with lenalidomide, also known as Revlimid, approved as second line therapy for multiple myeloma (MM). A monotherapy trial of lenalidomide in CLL was halted last year due to an increase in deaths seen in the active arm. Even at a reduced dose (I’m guessing here) the use of this agent plus ibrutinib plus rituximab seems risky. Also, the drug is owned by Celgene. So why conduct trials with lenalidomide at all? The answer to that question will be found in the list of clinical trials for CC-292, Celgene’s BTK inhibitor under development for B cell lymphoma.

But just to finish with ibrutinib. Here are the rest of the active clinical trials I could find:

TRIAL NUMBERPHASEDATE FILEDIBRUTINIB WITHINDICATION
NCT020131281,212/11/2013ublituximabCLL, MCL
NCT0157870734/11/2012v ofatumumabrrCLL
NCT012177491,210/7/2010ofatumumabCLL
NCT01478581211/18/2011nonerrMM
NCT0184172321/24/2013noner Hairy Cell leukemia
NCT019627921,29/27/2013carfilzomibMM

Ublituximab is a new anti-CD20 antibidy from TG Therapeutics and the clinical trial is being run by that company, not by J&J/PCYC. In contrast the ofatumumab trials, which are “active but not recruiting” are sponsored by Pharmacyclics.

Finally, just some tidbits. Ibrutinib presentations recently have included studies in some interesting new indications, particularly MM. There are two MM trials shown here, the second one being run in collaboration with Onyx Pharmaceuticals, whose proteosome inhibitor carfilzomib, has been approved for treatment of rrMM under the name Kyprolis.

I suspect we will see many more such collaborative efforts as the field matures.

Next up we will look at the efforts of two of the compounds seeking to compete with ibrutinib, Gilead’s idelalisib and Celgene’s CC-292.

Stay tuned.