Category Archives: immunology

Some Adjacencies in Immuno-oncology

Some thoughts to fill the space between AACR and ASCO (and the attendant frenzied biopharma/biotech IO deals).

Classical immune responses are composed of both innate and adaptive arms that coordinate to drive productive immunity, immunological expansion, persistence and resolution, and in some cases, immunological memory. The differences depend on the “quality” of the immune response, in the sense that the immunity is influenced by different cell types, cytokines, growth factors and other mediators, all of which utilize diverse intracellular signaling cascades to (usually) coordinate and control the immune response. Examples of dysregulated immune responses include autoimmunity, chronic inflammation, and ineffective immunity. The latter underlies the failure of the immune system to identify and destroy tumor cells.

Let’s look at an immune response as seen by an immunologist, in this case to a viral infection:

 immune viral

Of note are the wide variety of cell types involved, a requirement for MHC class I and II responses, the presence of antibodies, the potential role of the complement cascade, direct lysis by NK cells, and the potentially complex roles played by macrophages and other myeloid cells.

In the immune checkpoint field we have seen the impact of very specific signals on the ability of the T cell immune response to remain productive. Thus, the protein CTLA4 serves to blunt de novo responses to (in this case) tumor antigens, while the protein PD-1 serves to halt ongoing immune responses by restricting B cell expansion in the secondary lymphoid organs (spleen, lymph nodes and Peyer’s Patches) and by restricting T cell activity at the site of the immune response, thus, in the tumor itself. Approved and late stage drugs in the immune checkpoint space are those that target the CTLA4 and PD-1 pathways, as has been reviewed ad nauseum. Since CTLA4 and PD-1 block T cell-mediated immune responses at different stages it is not surprising that they have additive or synergistic activity when both are targeted. Immune checkpoint combinations have been extensively reviewed as well.

We’ll not review those subjects again today.

If we step back from those approved drugs and look at other pathways, it is helpful to look for hints that we can reset a productive immune response by reengaging the innate and adaptive immune systems, perhaps by targeting the diverse cell types and/or pathways alluded to above.

One source of productive intelligence comes from the immune checkpoint field itself, and its’ never-ending quest to uncover new pathways that control immune responses. Indeed, entire companies are built on the promise of yet to be appreciated signals that modify immunity: Compugen may be the best known of these. It is fair to say however that we remain unclear how best to use the portfolio of checkpoint modulators we already have in hand, so perhaps we can look for hints there to start.

New targets to sift through include the activating TNF receptor (TNFR) family proteins, notably 4-1BB, OX40, and GITR; also CD40, CD27, TNFRSF25, HVEM and others. As discussed in earlier posts this is a tricky field, and antibodies to these receptors have to be made just so, otherwise they will have the capacity to signal aberrantly either because the bind to the wrong epitope, or they mediate inappropriate Fc-receptor engagement (more on FcRs later). At Biogen we showed many years ago that “fiddling” with the properties of anti-TNFR antibodies can profoundly alter their activity, and using simplistic screens of “agonist” activity often led to drug development disaster. Other groups (Immunex, Amgen, Zymogenetics, etc) made very similar findings. Careful work is now being done in the labs of companies who have taken the time to learn such lessons, including Amgen and Roche/Genentech, but also BioNovion in Amsterdam (the step-child of Organon, the company the originally created pembrolizumab), Enumeral in Cambridge US, Pelican Therapeutics, and perhaps Celldex and GITR Inc (I’ve not studied their signaling data). Of note, GITR Inc has been quietly advancing it’s agonist anti-GITR antibody in Phase 1, having recently completed their 8th dose cohort without any signs of toxicity. Of course this won’t mean much unless they see efficacy, but that will come in the expansion cohort and in Phase 2 trials. GITR is a popular target, with a new program out of Wayne Marasco’s lab at the Dana Farber Cancer Institute licensed to Coronado and Tg Therapeutics. There are many more programs remaining in stealth for now.

More worrisome are some of the legacy antibodies that made it into the clinic at pharma companies, as the mechanisms of action of some of these agonist antibodies are perhaps less well understood. But lets for the sake of argument assume that a correctly made anti-TNFR agonist antibody panel is at hand, where would we start, and why? One obvious issue we confront is that the functions of many of these receptors overlap, while the kinetics of their expression may differ. So I’d start by creating a product profile, and work backward from there.

An ideal TNFR target would complement the immune checkpoint inhibitors, an anti-CTLA4 antibody or a PD-1 pathway antagonist, and also broaden the immune response, because, as stated above, the immune system has multiple arms and systems, and we want the most productive response to the tumor that we can generate. While cogent arguments can be made for all of the targets mentioned, at the moment 4-1BB stands as a clear frontrunner for our attention.

4-1BB is an activating receptor for not only T cells but also NK cells, and in this regard the target provides us with an opportunity to recruit NK cells to the immune response. Of note, it has been demonstrated by Ron Levy and Holbrook Khort at Stanford that engagement of activating Fc receptors on NK cells upregulates 4-1BB expression on those cells. This gives us a hint of how to productively combine antibody therapy with anti-4-1BB agonism. Stanford is already conducting such trials. Furthermore we can look to the adjacent field of CAR T therapeutics and find that CAR T constructs containing 4-1BB signaling motifs (that will engage the relevant signaling pathway) confer upon those CAR T cells persistence, longevity and T cell memory – that jewel in the crown of anti-tumor immunity that can promise a cure. 4-1BB-containing CAR T constructs developed at the University of Pennsylvania by Carl June and colleagues are the backbone of the Novartis CAR T platform. It is a stretch to claim that the artificial CAR T construct will predict similar activity for an appropriately engineered anti-4-1BB agonist antibody, but it is suggestive enough to give us some hope that we may see the innate immune system (via NK cells) and an adaptive memory immune response (via activated T cells) both engaged in controlling a tumor. Pfizer and Bristol Myers Squibb have the most advanced anti-4-1BB agonist antibody programs; we’ll see if these are indeed best-in-class therapeutics as other programs advance.

Agonism of OX40, GITR, CD27, TNFRSF25 and HVEM will also activate T cells, and some careful work has been done by Taylor Schreiber at Pelican to rank order the impact of these receptors of CD8+ T cell memory (the kind we want to attack tumors). In these studies TNFRSF25 clearly is critical to support CD8 T cell recall responses, and may provide yet another means of inducing immune memory in the tumor setting. Similar claims have been made for OX40 and CD27. Jedd Wolchok and colleagues recently reviewed the field for Clinical Cancer Research if you wish to read further.

Looking again beyond T cells another very intriguing candidate TNFR is CD40. This activating receptor is expressed on B cells, dendritic cells, macrophages and other cell types involved in immune responses – it’s ligand (CD40L) is normally expressed on activated T cells. Roche/Genentech and Pfizer have clinical stage agonist anti-CD40 programs in their immuno-oncology portfolios. Agonist anti-CD40 antibodies would be expected to activated macrophages and dendritic cells, thus increasing the expression of MHC molecules, costimulatory proteins (e.g. B7-1 and B7-2) and adhesion proteins like VCAM-1 and ICAM-1 that facilitate cell:cell interactions and promote robust immune responses.

I mentioned above that interaction of antibodies with Fc receptors modulates immune cell activity. In the case of anti-CD40 antibodies, Pfizer and Roche have made IgG2 isotype antibodies, meaning they will have only weak interaction with FcRs and will not activate the complement cascade. Thus all of the activity of the antibody should be mediated by it’s binding to CD40. Two other agonist anti-CD40 antibodies in development are weaker agonists, although it is unclear why this is so; much remains to be learned regarding the ideal epitope(s) to target and the best possible FcR engagement on human cells. Robert Vonderheide and Martin Glennie tackled this subject in a nice review in Clinical Cancer Research in 2013 and Ross Stewart from Medimmune did likewise for the Journal of ImmunoTherapy of Cancer, so I won’t go on about it here except to say that it has been hypothesized that crosslinking via FcgRIIb mediates agonist activity (in the mouse). Vonderheide has also shown that anti-CD40 antibodies can synergize with chemotherapy, likely due to the stimulation of macrophages and dendritic cells in the presence of tumor antigens. Synergy with anti-CTLA4 has been demonstrated in preclinical models.

One of the more interesting CD40 agonist antibodies recently developed comes from Alligator Biosciences of Lund, Sweden. This antibody, ADC-1013, is beautifully characterized in their published work and various posters, including selection for picomolar affinity and activity at the low pH characteristic of the tumor microenvironment (see work by Thomas Tötterman, Peter Ellmark and colleagues). In conversation the Alligator scientists have stated that the antibody signals canonically, i.e. through the expected NF-kB signaling cascade. That would be a physiologic signal and a good sign indeed that the antibody was selected appropriately. Not surprisingly, this company is in discussion with biopharma/biotech companies about partnering the program.

Given the impact of various antibody/FcR engagement on the activity of antibodies, it is worth a quick mention that Roghanian et al have just published a paper in Cancer Cell showing that antibodies designed to block the inhibitory FcR, FcgRIIB, enhance the activity of depleting antibodies such as rituximab. Thus we again highlight the importance of this sometimes overlooked feature of antibody activity. Here is their graphical abstract:

 graphical abstract

The idea is that engagement of the inhibitory FcR reduces the effectiveness of the (in this case) depleting antibody.

Ok, moving on.

Not all signaling has to be canonical to be effective, and in the case of CD40 we see this when we again turn to CAR T cells. Just to be clear, T cells do not normally express CD40, and so it is somewhat unusual to see a CAR T construct containing CD3 (that’s normal) but also CD40. We might guess that there is a novel patent strategy at work here by Bellicum, the company that is developing the CAR construct. The stated goal of having a CD40 intracellular domain is precisely to recruit NF-kB, as we just discussed for 4-1BB. Furthermore, the Bellicum CAR T construct contains a signaling domain from MYD88, and signaling molecule downstream of innate immune receptors such as the TLRs that signal via IRAK1 and IRAK4 to trigger downstream signaling via NF-kB and other pathways.

Here is Bellicum’s cartoon:

 cidecar

If we look through Bellicum’s presentations (see their website) we see that they claim increased T cell proliferation, cytokine secretion, persistence, and the development of long-term memory T cells. That’s a long detour around 4-1BB but appears very effective.

The impact of innate immune signaling via typical TLR-triggered cascades brings us to the world of pattern-recognition receptors, and an area of research explored extensively by use of TLR agonists in tumor therapy. Perhaps the most notable recent entrant in this field is the protein STING. This pathway of innate immune response led to adaptive T cell responses in a manner dependent on type I interferons, which are innate immune system cytokines. STING signals through IRF3 and TBK1, not MYD88, so it is a parallel innate response pathway. Much of the work has come out of a multi-lab effort at the University of Chicago and has stimulated great interest in a therapeutic that might be induce T cell priming and also engage innate immunity. STING agonists have been identified by the University of Chicago, Aduro Biotech, Tekmira and others; the Aduro program is already partnered with Novartis. They published very interesting data on a STING agonist formulated as a vaccine in Science Translational Medicine on April 15th (2 weeks ago). Let’s remember however that we spent several decades waiting for TLR agonists to become useful, so integration of these novel pathways may take a bit of time.

This emerging mass of data suggest that the best combinations will not necessarily be those that combine T cell immune checkpoints (anti-CTLA4 + anti-PD-1 + anti-XYZ) but rather those that combine modulators of distinct arms of the immune system. Recent moves by biopharma to secure various mediators of innate immunity (see Innate Pharma’s recent deals) and mediators of the immunosuppressive tumor microenvironment (see the IDO deals and the interest in Halozyme’s enzymatic approach) suggest that biopharma and biotech strategists are thinking along the same lines.

Our TIM-1 paper on T cell trafficking has published in Immunity

Sugarcone Biotech is pleased to congratulate our collaborators Gabriela Constantin and colleagues on the publication in Immunity of the paper entitled

TIM-1 Glycoprotein Binds the Adhesion Receptor P-Selectin and Mediates T Cell Trafficking during Inflammation and Autoimmunity by Stefano Angiari, Tiziano Donnarumma, Barbara Rossi, Silvia Dusi, Enrica Pietronigro, Elena Zenaro, Vittorina Della Bianca, Lara Toffali, Gennj Piacentino, Simona Budui, Paul RennertSheng XiaoCarlo Laudanna, Jose M. CasasnovasVijay K. Kuchroo, and Gabriela Constantin.

published online ahead of print today, April 3 2014 DOI: http://dx.doi.org/10.1016/j.immuni.2014.03.004

The paper makes extensive use of antibodies and proteins developed by SugarCone founder Paul Rennert, and Biogen Idec colleagues. This elegant work details a previously unknown function of TIM-1 in regulating T cell movement in the inflamed vasculature, thereby controlling local inflammation. This new biology complements the role previously described for TIM-1 in mediating lung allergic responses. Alongside our recently published work in Ebola virus cellular infection, we begin to appreciate the role of TIM-1 in diverse aspects of infection, immunity, chronic inflammation and autoimmunity. See http://www.ncbi.nlm.nih.gov/pubmed/21911007 for more on this important protein.

Here is the summary of the paper from Immunity:

Figure thumbnail fx1

Highlights

 

  • •TIM-1 mediates Th1 and Th17 cell capture and rolling on P-selectin in vitro
  • •TIM-1 is a major P-selectin ligand controlling T cell adhesion in inflamed vessels
  • •Both mucin and IgV domains of TIM-1 are required for the interaction with P-selectin
  • •TIM-1-mediated adhesion controls autoimmune and inflammatory disease development

 

Summary

Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.