Category Archives: genetic engineering

Hematological Malignancies – who will win the battle for patients? Part 2: BiTEs & CARTs targeting CD19

 We talked last time about the potential of Macrogenic’s DART bi-specific technology and we focused primarily on the T cell engaging bi-specifics, such as DART006, a CD3 x CD123 therapeutic. Lets just quickly state the hypothesis:

Bi-specific modalities will allow the targeting of the patients T-cell driven immune       system to a precise (tumor-expressed) antigen.

Other outcomes are possible. For example, the drugs might not work at all, or they might not be as specific as designed, or they act in ways we have not anticipated. In the context of the Macrogenics platform, we actually don’t know yet, as DART006 is very early in clinical development. BiTEs (Bi-specific T cell Engagers), Micromet’s version of a bi-specific technology, have been around a while and are further advanced. Acute Lymphocytic Leukemia (ALL) patients are now being recruited into Phase 3 clinical trials for blinatumomab, the anti-CD3 x anti-CD19 BiTE, with study completion due in July 2017. Micromet was acquired for 1.2BB dollars in January 2012 by Amgen. At the time Amgen R&D head Roger Perlmutter pointed to the Phase 2 clinical trial results in ALL as driving Amgen’s interest in the technology. Indeed, blinatumomab has produced some remarkable data in ALL. Historically, chemotherapy treated ALL patients had a complete response rate (CR) of about 38% and a median overall survival (OS) of 5 months. Rituximab (anti-CD20) didn’t perform much better than chemo. In the blinatumomab Phase 2 trial of adult relapsed/refractory (r/r) ALL, patients received a continuous IV infusion of blinatumomab for 28 days followed by 14-days off drug. Patients who responded could re-up for 3 more cycles of treatment or proceed to allogeneic stem cell transplantation (HCST). There was a very high rate CR of ~70% and the apparent absence of minimal residual disease (MRD) in many patients. Blinatumomab also impacted overall survival (OS) in ALL, as reported at the American Society of Hematology conference (ASH) in 2012 (Abstract #670). The CR was still 69% with most patients being MRD negative. The OS for responders was 14.1 months while the OS for non-responders was 6.6 months (so median OS = 9.8 months). Thirteen of the 36 patients enrolled were able to receive allogeneic HSCT.

The most common adverse events (AEs) were fever, headaches, tremors, and fatigue. Some patients experienced severe AEs (SAEs) such as cytokine release syndrome (CRS) and central nervous system events, including seizures and encephalopathy. One patient stopped treatment due to fungal infection leading to death. So, there is tox to consider.

A smaller study directed to salvaging patients with MRD despite prior treatments showed even more dramatic results: 16/21 patients became MRD negative and the probability for relapse-free survival was 78% at a median follow-up of 405 days. This is a remarkable result. An SAE led to one drug discontinuation.

Last year at ASH (Abstract #1811) we saw early results from an open label phase 2 study in r/r Non-Hodgkin’s Lymphoma (NHL), specifically, Diffuse Large B cell Lymphoma (DLBCL). Blinatumomab was administered by continuous IV for 8 weeks. Patients received either stepwise blinatumomab dosing of 9, 28, and 112 μg/d during weeks 1, 2, and thereafter, or received 112 μg/d throughout. All patients received prophylactic dexamethasone. So you can see some dose modifications here designed to reduce SAEs. After a 4-weeks off drug, patients who had responded could receive a 4-week consolidation cycle. 11 patients had been enrolled, 7 patients were evaluable for response. These patients had failed >2 prior therapies, including some patients who had relapsed after HSCT. The overall response rate (ORR) was 57% (14% CR plus 43% partial response (PR); 30% had progressive disease (all from the stepwise dose regimen). Note this is a very small sample size so every patient has a large impact on the response numbers. Ten of 11 patients had at least one grade ≥3 AE with 2 patients having grade 4 AEs (one patient with neutropenia and leucopenia; one with respiratory insufficiency). There were no drug related fatalities. Ten of 11 patients had central nervous system (CNS) AEs, mostly tremor, speech disorder and disorientation: in 5 patients these CNS toxicities were grade 3. The overall benefit/risk assessment suggested stepwise dosing (9, 28, 112 μg/d) to be the recommended dose.

Well first of all let’s point out here that blinatumomab has orphan drug status for ALL and NHL. That’s just to remind ourselves that these are pretty rare diseases with high unmet need. For ALL in particular this seems a good risk/benefit scenario. Within the diseases that make up NHL, DLBCL is not the most treatable (nor the least), and we note also that there is no attempt in the open-label phase 2 to characterize DLBCL into its subclasses – these have different oncogenic drivers and different outcomes for patients. Blinatumomab has also been in Phase in in other NHL classes, including Mantle Cell Lymphoma and Follicular lymphoma. Response rates were generally below current standard of care. Similarly, we can go back to look at rituximab, ofatumumab, and even ibrutinib, idelalisib and ABT-199 in NHL and likely find better treatment paradigms for r/rDLBCL than this, although maybe not as a monotherapy (see those earlier posts here:

Given the modality (CD3 x CD19 bi-specific) maybe the most interesting comparison is with Novartis’ CAR-T CD19 technology CTL019. CTL019 is the product of genetic engineering technology developed by Carl June’s group at U Penn, and is currently advancing in close to 20 clinical trials. The most advanced is a Phase 2 trial in r/r ALL, with a primary outcome completion due in July of 2015. As a quick reminder, CARs combine a single chain variable fragment (scFv) of an antibody (e.g. anti-CD19) with intracellular signaling domains from CD3 and 4-1BB into a single genetically engineered chimeric protein. The CD19-specific version of this technology is termed CTL019. Patient’s T cells are lentivirally transduced with a CAR, expanded ex vivo then infused back into the patient. Infusion of these cells results in 100 to 100,000x in vivo T cell proliferation, anti-tumor activity, and prolonged persistence in patients carrying CD19+ B cell tumors. Results from a pilot study in pediatric and adult r/r ALL were presented at ASH in 2013 (Abstract #67). Most patients received lymphocyte-depleting chemotherapy just a few days prior to infusion. This helps de-bulk the malignancy. In this small trial, 82% achieved a CR, 18% did not respond. Of the patients achieving CR, 20% subsequently relapsed. The rest of the patients are being followed and there has been no update. Responding patients all developed CRS, and about 30% of patients were treated with the IL6-receptor antagonist tocilizumab plus corticosteroids to control CRS symptoms.

We have a little more data on CTL019 from NHL studies, specifically r/r CLL. In December 2013, Phase 2 data were presented at ASH (Abstract #873).  Patients with r/r CLL received lymphocyte depleting chemotherapy and then one of several doses of transduced T cells (this is a dose study in that regard, although, cutting to the chase, no dose response was seen, so lets skip over that). Median follow-up for analysis was 3 months at which time the ORR = 40% (20% CR plus 20% PR, with clearance of CLL from the blood and bone marrow and at least a 50% reduction in lymphadenopathy. The toxicity profile was similar to that described above, dominated by treatable CRS. In a small Phase 1 study (Abstract #168), adult patients with r/r NHL including patients with chemotherapy-refractory primary mediastinal B cell lymphoma and DLBCL were enrolled. They received chemo to reduce disease burden and then an infusion of CTL019. 12 of 13 evaluable patients responded (ORR = 93%), the CR = 54% and PR = 38%. These are outstanding responses.

So let’s take a step back. It is a bit hard to compare these regimens head-to-head as they are in different stages of clinical development, the trails are generally small, and in the case of NHL, we have limited data on different types of lymphomas. At the same time we have to consider the larger landscape of therapies available, and ask ourselves how patients will best be served. In the case of the T cell engaging bispecific antibody landscape, it is very clear that robust anti-tumor responses are generated with very low concentrations of antibody. It seems to me very likely that there will be malignancies or subsets of malignancies where this technology will be very useful, including ALL, as we just saw. It will be important to either improve the antibody construction or alter the dose regimen sufficiently to reduce the toxicities associated with the BiTE therapeutic and competing modalities, including the DARTs. Now, people will claim that the tox is not so bad, and that it is only efficacy that matters, and that’s fine, but in the face of competition from CTL019 and other therapeutics, maybe this becomes a differentiating issue. This might also be different for the pediatric population (a critically important population in ALL) versus the adult population. When we look at the CAR T cell transduction technologies we need longer follow-up on the phase 2 studies but certainly anecdotal evidence from smaller trials suggests that some patients will experience long-lasting remissions. If this observational information holds up in the larger clinical trials than the technology will cement itself a place in ALL therapy, and perhaps in other diseases as well. We don’t know yet whether the BiTE therapeutic blinatumomab or the CAR therapeutic CTL019 will have a top-tier profile in NHL. This may change as more data become available, as some of the small studies are very encouraging. One of the interesting twists to the CAR technology is the question of how to make it widely available. In host-institutions (The U Penn system, MD Anderson, NCI) this is a centralized procedure, and in medical institutions world-wide, core patient cell facilities are commonplace. However it is rumored that Novartis at least wants to maintain the core facility model, as they picked up the Dendreon facility in Morris Plains New Jersey (at a bargain price) specifically to support CAR technology, and plan to duplicate those capabilities in Basel and in Singapore. Perhaps yesterday’s pickup of Israel’s Gamida Cell also plays into this centralized cell handling model. None of these complexities will bother the bi-specific therapeutics as these are injectable – that said, I’m not sure anyone will choose walking around with an IV pump for two months if they can avoid it.

So while these therapies and those like them are very potent, we will have to see how patients and providers ultimately use them.

Now, we’ve unfairly used blinatumomab and CTL019 to illustrate what are both pretty large areas of therapeutic development. We’ll come back to talk about the other players in the bispecific antibody and CAR spaces very soon.

stay tuned.

CRISPR Technology and Therapeutic Gene Editing – TJ Cradick

A Guest Post from Thomas (TJ) Cradick, Director of the Protein Engineering Facility, Georgia Institute of Technology; @NucleaseLab

Genome editing has remained a therapeutic goal since before specific, disease-causing mutations were discovered. Introducing mutations into cell lines and model organisms have also created very useful research reagents. The rate of both processes is greatly enhanced by creating nearby DNA breaks. These effects were first shown with meganucleases, which are very specific but have proved very difficult to convert to targeting novel sequences. The first readily engineered nuclease group was ZFNs (zinc-finger nucleases), followed by TALENs (transcription activator-like effector nucleases), and most recently CRISPRs (clustered regularly interspersed short palindromic repeats). The DNA breaks caused by these nucleases are repaired by the cellular DNA repair machinery and can lead to precise modification. Genome editing is no longer science fiction, though issues remain on delivery and specificity.

TALENs are easier to design than Zinc Finger Nucleases due to straightforward rules linking DNA binding repeats to a target sequence [1,2]. These rules don’t help pick the highest activity sites, though a new program, SAPTA, helps pick sites that can be targeted with high activity and specificity [3]. Several groups have developed high-throughput cloning methods to assemble the DNA binding repeats in TALENs, though new proteins must be assembled for each target [4,5].

For each target, CRISPR systems have the advantage of using identical proteins identified as a means for bacteria to fend off pathogens. These gene-editing systems are called clustered regularly interspaced short palindromic repeats (CRISPR) and pronounced “crisper”. Cas (CRISPR-associated) proteins clone a piece of the foreign DNA into the CRISPR genomic locus between the repeats. Many of these foreign DNAs are saved in the daughter cells. One bacterial protein called Cas9 and a guide strand RNA expressed from these saved DNA pieces allow targeting complementary sequences if the foreign DNA is encountered again. The key is that CRISPR works by cutting DNA complementary to the “guide strand” RNA. Directing cleavage to a new target site only requires cloning a pair of annealed oligos into the guide strand expression cassette [6,7]. This saves the very difficult step of designing and cloning new DNA binding proteins, as are required for ZFNs or TALENs.

In the beginning of 2013 papers began describing genome editing in mammalian cells [7,8]. A number of labs made their plasmids available on Addgene and several created websites and online forums to spread the word. A new company, Editas Medicine, founded by five world leaders in genome editing was founded to use CRISPR and TALENS as treatments for genetic diseases.

One of the big concerns with each type of nuclease is “off-target mutation” in different region of the genome. Several programs help verify and optimize specificity by listing putative off-target cleavage sites, including PROGNOS for ZFNs and TALENs [9]. Others have also found ZFN and TALEN off-target sites, primarily through experimentally guided off-target searches. Currently, there are limited data indicating that TALENs have improved specificity over ZFNs and lower cytotoxicity [10-12]. A number of publications have described the high level of off-target cleavage possible using CRISPR [13,14] and chromosomal deletions or re-arrangements [15]. Although ZFNs and TALENs have off-target cleavage as well, the high levels seen with current CRISPR methods has many groups scurrying to develop newer, safer methods. Use of pairs of Cas proteins that each cut only one strand holds promise, though has yet to be optimized for gene repair [16,17]. It is also likely that improved CRISPR systems will be developed that provide more specificity, though they may have decreased targeting efficiency. For many applications, the ease and speed of the current generation of CRISPR systems will provide a valuable research tool while the work on CRISPR 2.0 continues.

1. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, et al. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509-1512.
2. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.
3. Lin Y, Fine EJ, Zheng Z, Antico CJ, Voit RA, et al. (2014) SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research: gkt1363.
4. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, et al. (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30: 460-465.
5. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotechnol 31: 76-81.
6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
7. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.
8. Mali P, Yang L, Esvelt KM, Aach J, Guell M, et al. (2013) RNA-guided human genome engineering via Cas9. Science 339: 823-826.
9. Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G (2013) An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic acids research: gkt1326.
10. Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, et al. (2011) Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology 29: 695-696.
11. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, et al. (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology 29: 731-734.
12. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, et al. (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 9283-9293.
13. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol.
14. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol.
15. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research 41: 9584-9592.
16. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, et al. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol.
17. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380-1389.