Category Archives: immuno-oncology

A quick look at the axitinib data and IO/VEGF inhibitor combos

Yes I know, there has been a lot of talk of immunotherapy combination trials (and tribulations). But in reviewing #ASCO17 slides I stumbled on some interesting results. (These are screen grabs actually and I don’t have a source for all the photos – my apologies to the folks that posted these pics!)

What looked interesting at ASCO? Lots of cool stories emerged, but I think this one was overlooked:

This slide grabbed my attention- this is a summary of data on PD-(L)-1 inhibitors combined with targeted inhibitors in advanced renal cell carcinoma (RCC). I’ve tagged some of the drugs just below the slide:

Screen Shot 2017-06-09 at 10.02.56 AM

The studies shown in the graph can be a little misleading, as the monotherapy studies are in the second-line or later setting, while the combination data are in the first line (treatment-naive) setting. For example the nivolumab result is from the CheckMate 025 trial vs. everolimus (an mTOR inhibitor from Novartis) in patients with advanced RCC for who had relapsed previous treatment with one or two regimens of antiangiogenic (i.e. anti-VEGF) therapy (Motzer et al 2013: Just to note in passing, nivolumab therapy in this setting triggered an overall response rate (ORR) of 25% of patients, and had a modest but significant impact on progression free survival (PFS) and median overall survival (mOS). Indeed, 30% of the nivolumab patients that responded were alive 5 years later, as reported at ASCO last year (

The atezolizumab plus bevacizumab data come from the IMmotion 150 trial was presented at the ASCO GU meeting in February 2017 ( In that study the combination was compared to atezolizumab alone or sunitinib alone, in treatment-naive (frontline) patients. The combination produced an ORR = 32%, just a bit better that atezolizumab alone (26%) or sunitinib alone (29%) but there was a significant impact on PFS at 12 months particularly in patients having PD-L1+ tumors. Overall, patients achieved a median PFS of 11.7 months with the combination, 8.4 months with sunitinib, and 6.1 months with single-agent atezolizumab. PD-L1-positive tumors yielded a median PFS of 14.7 months with the combination, 7.8 months with sunitinib, and 5.5 months with atezolizumab monotherapy.  There was no improvement in the hazard ratio (a statistic that measures the chance of patient death in different cohorts in the trial, as compared to each other – arm vs arm).

Against that promising, if early, backdrop, the very interesting results here are shown wide right on the graph above – the combination of axitinib, a pan-VEGF-receptor inhibitor, with avelumab (anti-PD-L1, EMD Serona/Pfizer) and pembrolizumab (anti-PD-1, Merck). These studies are ongoing in the front-line setting. The overall response rate of axitinib with pembrolizumab of 67% is startlingly high, although these data are from a small study (I can’t find pembrolizumab or avelumab monotherapy data as a comparison, but the atezolizumab  monotherapy responses at 26% in the IMmotion 150 trial gives us a baseline for anti-PD-(L)-1 monotherapy in the frontline setting).

Axitinib is a second generation VEGF-R inhibitor with improved selectivity over earlier compounds, and also over some competing compounds (e.g. pazopanib from Novartis). Axitinib monotherapy in second line RCC produces an ORR around 40%, perhaps a little higher, with a modest impact on PFS when compared to sorafenib (~ 5 months v 3 months ). In the first line setting the monotherapy data are a bit better, with ORR reported at 50%+ and PFS of about a year, with a median overall survival (mOS) of about 2 years (similar to other VEGF inhibitors).

In that context an ORR of 55% (axitinib plus avelumab) or 67% (axitinib plus penbrolizumab) might be just additive (approximately 50% (axitinib) + 25% (anti-PD-(L)-1)). But then I came across this screen grab from the avelumab combo study:

Screen Shot 2017-06-09 at 12.16.02 PM

Notice here that the X-axis is in weeks, and so we have ongoing responses of greater than 1 year (52 weeks) in 14/32 patients (44%) and, as noted on the slide, a total of 24/32 patients (75%) with an ongoing response with a minimum of 24 weeks. Of interest, partial responses (PR, red triangles) evolved into complete responses (CR, blue triangles) over time, suggesting an ongoing immune response. Durability of response is critical here, but it certainly looks like this cohort will handsomely beat the 2 year mOS mark, which will best axitinib alone. The avelumab plus axitinib study ( and the pembrolizumab plus axitinib study ( certainly make the case for this particular combination (with axitinib); in contrast the combination of pembrolizumab with another kinase inhibitor pazopanib (that blocks VEGFR-2, KIT and PDGFR-β)  resulted in intolerable liver toxicity (

Ok so why is this important? I think there are a few interesting themes here. 1st, the combination of anti-PD-(L)-1 antibodies with standard of care (SOC) treatment, in this case, axitinib, has produce a result that dwarves what we see with epacadostat, the IDO inhibitor that would be expected to aid in blocking tumor immunosuppression. That is not to say that the epacadostat combination will not bring real benefit (again, it’s the durability plus the response that counts). It may very well do so, and it may do so with less toxicity (we’ve not discussed adverse events, which can be a differentiating feature).  However, the concept that pairing immune checkpoint inhibitors would unleash the anti-tumor immune response to bring synergistic activity is not robustly supported in this indication (not yet anyway).

That brings up the second interesting point, which is: against an ORR of 55% (using the avelumab plus axitinib data), how should we judge novel agents? If this is ‘noise’ arising from combination with SOC, how will novel agents overcome this and show a positive signal? The answer, simply, is in randomized, controlled trials (RCTs). Dr James Mule made this point at our IO combinations panel at the Sach’s pre-ASCO conference, and he used this slide from Lerrink to show how few immunotherapy combination studies are randomized (h/t to Dr Mule and to Lerrink):

Screen Shot 2017-06-11 at 11.20.31 AM








So despite the need for RCTs, we don’t see many yet. Another tactic maybe to drive a biomarker forward alongside a novel agent, in order to be able to select patients and differentiate in that manner. Easier said then done, but a possibility. The magnitude of potential noise is illustrated in this graph from EvaluatePharma’s nice IO combo report:

Screen Shot 2017-06-11 at 12.20.41 PMTheir report uncovered 765 immunotherapy combo trials across every conceivable indication. That is a lot of data to sift through.

Ok, the 3rd point. What I love about this example (renal cell cancer) is the focus on biology. Note here that we’ve not tried to be comprehensive about the RCC field, the treatment landscape, other novel targeted agents in development, the oncogenic drivers, the mutation burden, the tumor microenvironment, or the microbiome (all of these rooks will come home to roost in time).  Instead we focused on two classes of therapeutics that are playing well together – anti-angiogenic drugs (anti-VEGF, VEGFR inhibitors) and anti-PD-(L)-1 antibodies. That’s all. But this gives us a new way to think about the treatment and competitive landscape in immunotherapy – specifically, how are companies building on this early data.

To look at this I used an IO combo database that I’m beta-testing for Beacon-Intelligence, and an interesting theme emerged. So, a quick share (this is a quick look and again, not a comprehensive one by me: one can quickly find more studies in the database or online)

Screen Shot 2017-06-11 at 11.38.21 AM

So, not suprisingly, Roche/Genentech has a slew a trials designed to pair it’s anti-VEGF antibody bevacizumab with atezolizumab plus SOC in a range of indications including RCC.  What is a bit surprising is the appearance of Eli Lilly, bringing along it’s own anti-PD-L1 (LY3300054). While Lilly is not really considered an immunotherapy player, it does have some keen assets to deploy: anti-VEGFR2 antibody (ramacirumab) and, although not shown here, the multi-kinase inhibitor galunisertib that potently inhibits TGFBR1. The VEGF and TGFbeta pathways are intricately intertwined and both have profound impact on tumor biology, stromal biology, and immune biology. From a biology perspective, Lilly suddenly looks like an immunotherapy player in the making. Here I think is an interesting lesson, that is, follow the biology, not the molecule (btw, a search on TGFbeta combination therapy leads down another rabbit hole, best saved for later).

stay tuned


Immuno-oncology (IO) combination therapy- why the angst?

Thoughts triggered by discussions over the last month or two, perceived sentiment on social media, reaction to clinical updates, and pre-AACR butterflies.

In 2015 Gordon Freeman of the Dana Farber Cancer Institute, one of the discoverers of the PD-1/PD-L1 axis, rang me up and asked if I would help write a review with he and Kathleen Mahoney, an oncologist doing a research rotation in his lab. We ambitiously laid out the argument that PD-1/PD-L1 directed therapeutics would be the backbone of important combination therapies and reviewed the classes of potential combinatorial checkpoints ( We covered new immune checkpoint pathways within the Ig superfamily, T cell stimulatory receptors in the TNF receptor superfamily, stimulatory and inhibitory receptors on NK cells and macrophages, targets in the tumor microenvironment (TME), and so on. Importantly we also stopped to consider combinations with “traditional” cancer treatments, e.g. chemotherapy and radiation therapy, and also with “molecular” therapeutics, those directed to critical proteins that make cells cancerous. Regardless, it’s fair to say that we believed that pairing an anti-PD-1 mAb or an anti-PD-L1 mAb with another immuno-modulatory therapeutic would quickly yield impressive clinical results. A massive segment of the IO ecosystem (investors, oncologists, biopharma) shared this belief, and largely still does. Those stakeholders are betting clinical and R&D resources plus huge amounts of money on the promise of IO combinations. After all, the first IO combination of anti-CTLA4 mAb ipilimumab and anti-PD-1 mAb nivolumab has dramatically improved clinical response in advanced melanoma patients and to a lesser extent in advanced lung cancer patients. The downside is additive toxicity, and so the palpable feeling has been that new IO combinations would give a similar efficacy bump, perhaps even with less toxicity.

It’s now about two and a half years since we began drafting that paper and the inevitable letdown has set in. What happened? Let’s cover a few issues:

- Several marque IO combinations have been disappointing so far. Last year we saw unimpressive results from urelumab (anti-4-1BB) in combination with nivolumab (anti-PD-1) and of epacadostat (an IDO inhibitor) paired with pembrolizumab (anti-PD-1).

- Monotherapy trials of therapeutics directed to hot new targets (OX40, CSF1R, A2AR etc.) did not produce any dramatic results, forcing a reevaluation of the potential for truly transformative clinical synergy in the IO combination setting.

- These first two points also reminded the field of how limited preclinical mouse modeling can be.

- Combinations of standard of care with anti-CTLA4 mAb ipilimumab and with PD-1 pathway inhibitors have begun to show promising results, raising the efficacy bar in a variety of indications. There have been several startling examples: the combination of pembrolizumab plus chemotherapy in first line lung cancer, which doubled response rates over pembrolizumab alone; the combination of cobimetinib (a MEK inhibitor) with atezolizumab (anti-PD-L1 mAb) in colorectal cancer (MSS-type) which produced clinical responses in patient population generally non-responsive to anti-PD-1 pathway inhibition; the combination of atezolizumab plus bevacizumab (anti-VEGF) in renal cell carcinoma, showing promising early results; and so on.

- We can add the realization that relapses are a growing issue in the field, with approximately 30% of anti-CTLA4 or anti-PD-1 pathway treated patients eventually losing the anti-tumor response.

Note here that all of this is happening in a rapidly evolving landscape and is subject to snap-judgment reevaluation as clinical data continue to come in. For example, rumors that IDO inhibition is working well have been spreading in advance of the upcoming AACR conference. Indeed the clinical work on all of the immuno-modulatory pathways and IO combinations has increased, and the race to improve care in diverse indications continues. There will be additional success stories.

Why the perception of angst then? The sentiment has been summed up as “everything will work a little, so what do we research/fund/advance? How do we choose? How will we differentiate”? Such sentiment puts intense pressure on discovery, preclinical and early clinical programs to show robust benefit or, and perhaps this is easier, benefit in particular indications or clinical settings. I started thinking about this recently when a friend of mine walked me through a very pretty early stage program targeting a novel pathway. It was really quite impressive but it was also apparent that the hurdles the program would have to clear were considerable. Indeed it seemed likely that validation of the therapeutic hypothesis (that this particular inhibitor would be useful in IO) would not come from preclinical data in mice (no matter how pretty), nor from a Phase 1 dose escalation safety study, nor from a Phase 1 expansion cohort, but would require Phase 2 data from a combination study with an anti-PD-1 pathway therapeutic. That is, 5+ years from now, assuming all went smoothly. To advance such a therapeutic will take intense focus in order to build a fundable narrative, and will require stringent stage-gates along the way. Even then it will be very hard to pull it off. If this reminds you of the “valley of death” we used to talk about in the biotech realm, well, it should.

What should we look for to shake up this landscape? As mentioned, this is a rapidly evolving space. We have already seen a shift in language (“step on the gas” vs. “make a cold tumor hot” is one good example), but let’s list a few:

- “Cold tumors” have no immune response to stimulate. Making them “hot” is a hot field that includes oncolytic virus therapeutics, vaccines, “danger signals” (TLRs, STING, etc), and, to loop back around, chemotherapy and radiation therapy.

- Relapsed patients – as noted above we are seeing ~30% relapse rate in immunotherapy treated patients. Understanding the basis for relapse is a promising field and one that an emerging therapeutic could (and very likely will) productively target.

- Targeting the TME in cold tumors and in unresponsive tumors (the difference is the unresponsive tumors look like they should respond, in that they contain T cells). This is a vast field that covers tumor cell and stromal cell targets, secreted factors, tumor and T cell metabolism and on and on. One can imagine a setting in which a particular TME is characterized (by IHC, Txp or other means) and the appropriate immuno-modulatory therapeutics are applied. We see this paradigm emerging in some indications already. This would certainly be useful as a personalized medicine approach and could be an excellent way to position an emerging therapeutic.

We could go further to talk about the neoantigen composition of particular tumor types, the role of the underlying mutanome, the plasticity of the TME (it’s a chameleon), metabolic checkpoints, and other, potentially novel, targets.

All of this is under intense and active investigation and important data will emerge in time. Until then, nascent immunotherapy programs need to tell a clear and compelling story in order to attract the interest of investors, biopharma and ultimately, oncology clinical trialists. Those that fail to develop a compelling narrative are likely to struggle.

I’ll just end on a few narratives I really like for IO combinations going forward:

- the role of innate immunity in activating immune responses and expanding existing responses (e.g. immune primers like STING agonists and NK cell activators like lirilumab)

- the role of adenosine in maintaining an immunosuppressed (ie. non-responsive) TME (thus inhibitors of A2AR, CD39, CD73)

- the role of beta-catenin signaling in non-responsive tumors (while carefully selecting the mode of inhibition)

- the role of TGF-beta activity in resistance to PD-1 pathway therapeutics (again, with care in selecting the mode of inhibition)

of course at Aleta we’ve charted a different course, ever mindful of the need to focus where we see clear yet tractable unmet need. so we’ll see, starting with AACR in early April, kicking off an active medical conference season.

stay tuned.