Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival

A Few Day 1 Highlights

Ton Schumacher (Netherlands Cancer Institute), abstract IA04 ,has discovered a novel regulator of PDL1 expression called PD-L1M1. PD-L1M1 associates with PD-L1 and modulates the T cell inhibitory function of PD-L1. The protein is expressed ubiquitously, so unclear if this finding has therapeutic implication.

Michael Peled and Adam Mor (NYU School of Medicine), abstract A059, had a poster on molecules that interact with the cytoplasmic tail of PD-1 using high resolution Mass Spec. Two proteins were highlighted on their poster: EFHD2 and SH2D1A. EFHD2 co-localized with PD-1 and was essential for clustering and signal transduction (thus, ablation of EFHD2 blocks PD-1 mediated inhibitory activity). SH2D1A had the opposite function as evidenced by increased PD-1 inhibitory signaling when SH2D1A was knocked down and reduced PD-1 inhibitory signaling when overexpressed. SH2D1A physically competed with SHP2 for access to the PD-1 cytoplasmic tail.

Dario Vignali (U. Pitt School of Medicine), abstract IA05, focused on several emerging immune checkpoints. The first, IL-35, was investigated using anti-IL-35 antibody in various tumor models, with very nice results (similar to anti-PD-1). I liked the neuropilin story – this is a Sema4a binding protein and was offered up as a central control node for Treg activity. NRP1 controls Treg T cell expression of IFNgamma, acting in cis and in trans (so self-regulation and neighborhood regulation). Of interest he identified subsets of melanoma and H&N cancer patients having high levels of NRP1 in the TME, so this is perhaps an actionable finding.

Susan Kaech (Yale Univ Med School), abstract 1A07, presented data showing that the PEPCK overexpression ups the anti-tumor activity of T cells in the TME, thus showing that T cells – if given the tools – can co-opt the same metabolic pathways (lactate, fatty acids) used by tumor cells in the tumor microenvironment (TME). A consequence of this metabolic checkpoint is the upregulation of PD-1 via fatty acid signaling through the PPARs, delta I think. Of interest is that the metabolic switch is supported by gross upregulation of CD36, a fatty acid active transporter, on T cells in the TME.

Greg Delgoffe (U Pitt Cancer Inst), abstract IA08, picked up this general theme, demonstrating that T cells dividing in the TME rapidly lose mitochondrial (MT) mass, and therefore their ability to metabolize glucose ( a T cells preferred energy source). This is a failure of MT biogenesis, due to the downregulation of PGC1alpha, which is required for the process. In the TME, T cell PGC1alpha expression is regulated by AKT – robust AKT signaling leads to PGC1alpha downregulation. If note, PGC1alpha transgenic T cells retain high proliferative activity, do not lose MT, and are highly active Teffector cells.